control_flow.py 91.3 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
20 21 22 23 24 25 26 27 28
from ..framework import (
    Program,
    Variable,
    Operator,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
29
from ..layer_helper import LayerHelper, unique_name
30 31 32 33 34 35 36 37 38 39 40
from .utils import (
    assert_same_structure,
    map_structure,
    hold_mutable_vars,
    copy_mutable_vars,
    padding_to_same_structure,
    is_sequence,
    pack_sequence_as,
    flatten,
    to_sequence,
)
Y
yuyang18 已提交
41
import numpy
42
import warnings
L
liym27 已提交
43
from functools import reduce, partial
44 45 46 47 48 49
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
50
from ..backward import _infer_var_data_type_shape_
2
201716010711 已提交
51
import paddle
52
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
53

Q
QI JUN 已提交
54
__all__ = [
55 56 57 58 59 60 61 62 63
    'Switch',
    'increment',
    'array_write',
    'array_read',
    'cond',
    'StaticRNN',
    'Print',
    'Assert',
    'while_loop',
D
dzhwinter 已提交
64 65
]

Y
Yu Yang 已提交
66

67 68
def select_output(input, outputs, mask):
    """
69
    **select_output**
70 71 72 73 74 75 76 77 78 79 80 81 82 83
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
84 85 86 87
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

88 89 90 91 92
    helper.append_op(
        type='select_output',
        inputs={'X': input, 'Mask': mask},
        outputs={'Out': outputs},
    )
93 94 95
    return outputs


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
111 112
        map(lambda a, b: a if a == b else -1, first_shape, second_shape)
    )
113 114 115
    return out_shape


116 117 118
def select_input(inputs, mask):
    """
    **select_input**
119

120 121 122 123 124 125 126 127 128 129 130 131
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
132 133 134
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

135
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
136
    # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
137 138 139
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
140

141 142 143 144 145 146 147 148
    out = helper.create_variable(
        dtype=output_dtype, shape=output_shape, type=output_type
    )
    helper.append_op(
        type='select_input',
        inputs={'X': inputs, 'Mask': mask},
        outputs={'Out': out},
    )
149 150 151
    return out


152
def select_input_with_buildin_type(inputs, mask, name):
153
    from paddle.jit.dy2static.variable_trans_func import (
154 155
        to_static_variable,
    )
156
    from paddle.jit.dy2static.utils import UndefinedVar
157

158 159
    false_var, true_var = inputs

160
    if isinstance(false_var, UndefinedVar) and isinstance(
161 162 163
        true_var, UndefinedVar
    ):
        """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None."""
164 165
        return None

166
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
167 168 169 170
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
171 172
                f"Exceptions throwed while doing select_input on {name}:\n{e}"
            )
173

174 175 176
    elif isinstance(false_var, support_ret_buildin_type) and isinstance(
        false_var, type(true_var)
    ):
177 178 179 180
        if false_var == true_var:
            return false_var
        else:
            inputs = [
181
                to_static_variable(false_var),
182
                to_static_variable(true_var),
183 184
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
185 186 187 188 189 190 191
    elif (
        isinstance(false_var, support_ret_buildin_type)
        and isinstance(true_var, Variable)
    ) or (
        isinstance(true_var, support_ret_buildin_type)
        and isinstance(false_var, Variable)
    ):
192 193 194
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
195
            "false_var returned by false_fn is '{}' and true_var of true_fn is "
196 197 198 199 200 201 202 203 204
            "'{}'".format(type(false_var), type(true_var))
        )
    elif (
        isinstance(false_var, UndefinedVar)
        and isinstance(true_var, (Variable,) + support_ret_buildin_type)
    ) or (
        isinstance(true_var, UndefinedVar)
        and isinstance(false_var, (Variable,) + support_ret_buildin_type)
    ):
205 206

        def create_var_if_not_undefined_var(a):
207 208
            if isinstance(a, UndefinedVar):
                return a
209 210
            return to_static_variable(a)

211
        true_var, false_var = to_static_variable(true_var), to_static_variable(
212 213
            false_var
        )
214
        inputs = [false_var, true_var]
215 216 217
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
218
            "returned by false_fn is '{}' and true_var of true_fn is '{}'".format(
219 220 221
                type(false_var), type(true_var)
            )
        )
222 223 224 225
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
226 227
            f"Exceptions throwed while doing select_input on {name}:\n{e}"
        )
228 229


230
def split_lod_tensor(input, mask, level=0):
231 232 233 234
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
235 236
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
237 238

    Args:
239
        input(Variable|tuple|list|None): The input tensor that contains complete
240
                                lod information needed to construct the output.
241
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
242
        level(int): The specific lod level to split.
243 244

    Returns:
Q
qiaolongfei 已提交
245 246 247 248
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
249 250 251 252

    Examples:
        .. code-block:: python

253
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
254
          x = fluid.layers.data(name='x', shape=[1])
255 256
          x.persistable = True

Q
qiaolongfei 已提交
257
          y = fluid.layers.data(name='y', shape=[1])
258 259
          y.persistable = True

Q
qiaolongfei 已提交
260
          out_true, out_false = fluid.layers.split_lod_tensor(
261
                input=x, mask=y, level=level)
262

263
    """
264 265 266 267 268 269
    check_type(
        input,
        'input',
        (Variable, list, tuple, type(None)),
        'fluid.layers.split_lod_tensor',
    )
270 271
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
272
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
273 274
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
275 276 277 278 279 280 281 282 283
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true, 'OutFalse': out_false},
        attrs={'level': level},
    )
284 285 286
    return out_true, out_false


287
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
288 289 290 291 292
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
293 294 295
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
296 297

    Args:
298 299 300
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
301
                            lod information needed to construct the output.
302
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
303
        level(int): The specific lod level to merge.
304 305 306 307 308 309 310

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

311
          import paddle.fluid as fluid
312 313 314 315 316 317 318 319 320 321 322 323
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
324
    helper = LayerHelper('merge_lod_tensor', **locals())
325 326 327 328 329 330
    check_type(
        x,
        'x',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
331
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
332 333 334 335 336 337 338 339 340 341 342 343
    check_type(
        in_true,
        'in_true',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
    check_type(
        in_false,
        'in_false',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
X
Xin Pan 已提交
344
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
345 346 347 348 349 350
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level},
    )
351 352 353
    return out


354
@static_only
355 356 357 358 359 360 361 362 363 364 365 366
def Print(
    input,
    first_n=-1,
    message=None,
    summarize=20,
    print_tensor_name=True,
    print_tensor_type=True,
    print_tensor_shape=True,
    print_tensor_layout=True,
    print_tensor_lod=True,
    print_phase='both',
):
Y
Yan Chunwei 已提交
367
    '''
368 369
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
370 371 372 373 374 375 376 377 378
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
379
        input (Variable): A Tensor to print.
380
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
381
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
382 383
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
384 385 386
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
387
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
388
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
389
        print_phase (str): Which phase to displace, including 'forward',
390
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
391 392
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
393 394

    Returns:
395
        Variable: Output tensor.
Y
Yan Chunwei 已提交
396

397 398 399 400
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
401

Y
Yan Chunwei 已提交
402 403
    Examples:
        .. code-block:: python
404

405 406 407
           import paddle

           paddle.enable_static()
408

409 410 411 412 413 414 415 416 417 418 419 420 421 422
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
423
    '''
424 425 426 427 428 429
    check_variable_and_dtype(
        input,
        'input',
        ['float32', 'float64', 'int32', 'int64', 'bool'],
        'fluid.layers.Print',
    )
430

431 432
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    helper.append_op(
        type='print',
        inputs={'In': input},
        outputs={'Out': output},
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_layout': print_tensor_layout,
            'print_tensor_lod': print_tensor_lod,
            'print_phase': print_phase.upper(),
        },
    )
449
    return output
Y
Yan Chunwei 已提交
450 451


H
Huihuang Zheng 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

515 516 517 518 519
    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond, "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize},
    )
H
Huihuang Zheng 已提交
520 521 522 523

    return op


524
# (TODO: Mine) There exists dependency. It will be removed later.
525
class BlockGuard:
Y
Yu Yang 已提交
526
    """
527 528 529 530
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
531 532
    """

533 534
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
535
            raise TypeError("BlockGuard takes a program")
536
        self.main_program = main_program
Y
Yu Yang 已提交
537 538

    def __enter__(self):
W
Wu Yi 已提交
539
        self.main_program._create_block()
Y
Yu Yang 已提交
540 541

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
542
        self.main_program._rollback()
Y
Yu Yang 已提交
543 544 545 546 547
        if exc_type is not None:
            return False  # re-raise exception
        return True


548
# (TODO: Mine) There exists dependency. It will be removed later.
Y
Yang Yang 已提交
549 550 551 552 553
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
554 555
    """

Y
Yu Yang 已提交
556
    def __init__(self, rnn):
X
Xin Pan 已提交
557
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
558
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
559
        super().__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
560 561 562 563
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
564
        return super().__enter__()
Y
Yu Yang 已提交
565 566

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
567 568
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
569
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
570
        self.rnn._complete_op()
571
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
572 573


574
class StaticRNNMemoryLink:
Y
Yu Yang 已提交
575
    """
576 577 578 579
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
580 581 582 583 584 585 586 587 588


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
589 590 591 592 593 594 595 596
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


597
class StaticRNN:
598
    """
599 600
    :api_attr: Static Graph

601 602
    StaticRNN class.

603 604 605 606 607 608 609
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
610 611

    Examples:
612 613
        .. code-block:: python

614
            import paddle
615 616 617 618
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
619
            paddle.enable_static()
620 621
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
622 623 624 625 626
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
627
            # transform batch size to dim 1
628
            x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
629 630 631

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
632
                # mark created x_emb as input, each step process a word
633
                word = rnn.step_input(x_emb)
634
                # create prev memory parameter, batch size comes from word
635 636
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
637 638
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
639
                # mark hidden as output
640
                rnn.step_output(hidden)
641
            # get StaticrNN final output
642
            result = rnn()
C
chengduo 已提交
643

644
    """
645

Y
Yu Yang 已提交
646 647 648 649
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

650
    def __init__(self, name=None):
651
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
652
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
653 654 655 656 657 658 659 660
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
661
        """
662 663
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
664
        """
Y
Yang Yang 已提交
665
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
666 667 668 669 670

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

671 672 673 674 675 676 677 678 679
    def memory(
        self,
        init=None,
        shape=None,
        batch_ref=None,
        init_value=0.0,
        init_batch_dim_idx=0,
        ref_batch_dim_idx=1,
    ):
680
        """
C
chengduo 已提交
681 682 683
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
684 685
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
686

687
        Args:
688
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
689 690
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
691 692 693 694 695 696 697
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
698 699

        Returns:
700 701 702 703 704
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

705
                import paddle
706 707 708 709
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
710
                paddle.enable_static()
711 712 713 714 715 716 717 718
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
719
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
720 721 722 723 724 725 726 727 728 729

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
730 731 732


        Examples 2:
733 734
            .. code-block:: python

735
                import paddle
736 737 738
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers
                vocab_size, hidden_size=10000, 200
739
                paddle.enable_static()
740 741 742 743 744 745 746 747
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
748
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
749 750 751 752 753 754 755 756 757 758
                boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # init memory
                        prev = rnn.memory(init=boot_memory)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # update hidden with prev
                        rnn.update_memory(prev, hidden)
759

760
        """
Y
Yu Yang 已提交
761
        self._assert_in_rnn_block_('memory')
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        check_type(
            init,
            "init",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            shape,
            "shape",
            (list, tuple, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            batch_ref,
            "batch_ref",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
Y
Yu Yang 已提交
780
        if init is None:
781
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
782
                raise ValueError(
783 784
                    "if init is None, memory at least need shape and batch_ref"
                )
785
            parent_block = self._parent_block()
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
            var_name = unique_name.generate_with_ignorable_key(
                "@".join([self.helper.name, "memory_boot"])
            )
            boot_var = parent_block.create_var(
                name=var_name,
                shape=shape,
                dtype=batch_ref.dtype,
                persistable=False,
            )

            parent_block.append_op(
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'dtype': boot_var.dtype,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx,
                },
            )
Y
Yu Yang 已提交
808 809 810 811

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
812 813 814
                name=unique_name.generate_with_ignorable_key(
                    "@".join([self.helper.name, "mem"])
                ),
F
fengjiayi 已提交
815
                dtype=init.dtype,
816 817 818 819 820
                shape=init.shape,
            )
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem
            )
Y
Yu Yang 已提交
821 822 823
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
824 825 826 827 828 829 830 831
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
832 833 834 835 836
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

837
                import paddle
838 839 840 841
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
842
                paddle.enable_static()
843 844 845 846 847 848 849 850
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
851
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
852 853 854 855 856 857 858 859 860 861

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
862

C
chengduo 已提交
863
        """
Y
Yu Yang 已提交
864
        self._assert_in_rnn_block_('step_input')
865
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
866
        if self.seq_len is None:
Y
Yu Yang 已提交
867
            self.seq_len = x.shape[0]
868
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
869 870
            raise ValueError("Static RNN only take fix seq_len input")

871 872 873
        ipt = self.helper.create_variable(
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type
        )
Y
Yu Yang 已提交
874 875 876 877
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
878 879 880 881 882 883 884 885
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
886 887 888 889

        Examples:
            .. code-block:: python

890
                import paddle
891 892 893 894
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
895
                paddle.enable_static()
896 897 898 899 900 901 902 903
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
904
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
905 906 907 908 909 910 911 912 913 914 915 916 917

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        rnn.step_output(hidden)

                result = rnn()
918

C
chengduo 已提交
919
        """
Y
Yu Yang 已提交
920
        self._assert_in_rnn_block_('step_output')
921
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
922

X
Xin Pan 已提交
923
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
924 925 926 927 928 929
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'dtype': o.dtype},
        )
Y
Yu Yang 已提交
930

931 932 933 934 935
        out_var = self._parent_block().create_var(
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.dtype,
        )
Y
Yu Yang 已提交
936 937 938 939

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
940 941 942 943
        """
        Mark the StaticRNN output variables.

        Args:
944
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
945 946 947

        Returns:
            None
948 949 950 951

        Examples:
            .. code-block:: python

952
                import paddle
953 954 955 956
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
957
                paddle.enable_static()
958 959 960 961 962 963 964 965
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
966
                x_emb = paddle.transpose(x_emb, perm=[1, 0, 2])
967 968 969 970 971 972 973 974 975 976 977 978 979 980

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        # mark each step's hidden and word as output
                        rnn.output(hidden, word)

                result = rnn()
C
chengduo 已提交
981
        """
Y
Yu Yang 已提交
982 983 984 985
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
986
        """
987
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
988 989 990

        Args:
            mem(Variable): the memory variable.
991
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
992
                           var and mem should have same dims and data type.
C
chengduo 已提交
993 994 995

        Returns:
            None
996

C
chengduo 已提交
997
        """
998 999
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
1000 1001
        self.memories[mem.name].mem = var

1002
    def _parent_block(self):
1003
        prog = self.helper.main_program
Y
Yu Yang 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1019
    def _complete_op(self):
1020 1021
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
1022
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
1037 1038 1039
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
1040 1041 1042 1043 1044 1045 1046 1047
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

1048 1049 1050
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
1051 1052

        step_scope = parent_block.create_var(
1053 1054
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
1055 1056 1057 1058

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
1059
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
1060 1061 1062
        boot_memories = []
        pre_memories = []
        memories = []
1063
        for _, mem in self.memories.items():
Y
Yu Yang 已提交
1064 1065
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
1066 1067 1068
            assert (
                mem.mem is not None
            ), "%s should be updated in every step." % (mem.init.name)
Y
Yu Yang 已提交
1069 1070
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
1071
            new_mem = self.helper.create_variable_for_type_inference(
1072 1073 1074 1075 1076 1077 1078 1079
                dtype=mem_var.dtype
            )
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'dtype': mem_var.dtype},
            )
Y
Yu Yang 已提交
1080 1081 1082

            memories.append(new_mem.name)

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters,
            },
            outputs={'outputs': outlinks, 'step_scopes': [step_scope]},
            attrs={
                'has_states': len(pre_memories) > 0,
                'ex_states': pre_memories,
                'states': memories,
                'sub_block': rnn_block,
            },
        )
Y
Yu Yang 已提交
1098 1099


1100
# (TODO: Mine) There exists dependency. It will be removed later.
Y
Yang Yang(Tony) 已提交
1101 1102 1103 1104
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
1105
        super().__init__(while_op.helper.main_program)
Y
Yang Yang(Tony) 已提交
1106 1107 1108 1109
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
1110
        return super().__enter__()
Y
Yang Yang(Tony) 已提交
1111 1112 1113 1114 1115

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1116
        self.while_op._complete()
1117
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yang Yang(Tony) 已提交
1118 1119


1120
# (TODO: Mine) There exists dependency. It will be removed later.
1121 1122 1123
def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
1124 1125 1126 1127 1128 1129 1130 1131
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1145 1146 1147 1148 1149 1150 1151 1152
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1153
                if in_var_name not in inner_outputs and not is_ignore_vars(
1154 1155
                    op, in_var_name
                ):
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
1171 1172 1173 1174 1175
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1176 1177 1178 1179 1180 1181 1182
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


1183
# (TODO: Mine) There exists dependency. It will be removed later.
1184
class While:
X
Xin Pan 已提交
1185
    """
1186
    :api_attr: Static Graph
1187

1188
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1189

1190 1191 1192 1193
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1194 1195 1196 1197 1198 1199
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1200
    Args:
1201
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1202
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1203
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1204

1205
    Examples 1:
X
Xin Pan 已提交
1206
          .. code-block:: python
1207

1208
            import paddle.fluid as fluid
1209 1210 1211 1212 1213
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1214

L
LiYuRio 已提交
1215
            cond = paddle.less_than(x=i, y=loop_len)
1216
            while_op = fluid.layers.While(cond=cond)
1217
            with while_op.block():
1218
                i = fluid.layers.increment(x=i, value=1, in_place=True)
L
LiYuRio 已提交
1219
                paddle.assign(paddle.less_than(x=i, y=loop_len), cond)
1220 1221 1222 1223 1224

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1225 1226 1227 1228 1229 1230
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

L
LiYuRio 已提交
1231
            import paddle
1232 1233 1234 1235 1236 1237 1238 1239 1240
            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

L
LiYuRio 已提交
1241
            cond = paddle.less_than(x=i, y=loop_len)
1242 1243 1244 1245 1246 1247
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
L
LiYuRio 已提交
1248
                paddle.assign(paddle.less_than(x=i, y=loop_len), cond)
1249 1250 1251 1252 1253 1254

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1255 1256
    """

Y
Yang Yang(Tony) 已提交
1257 1258 1259 1260
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1261
    def __init__(self, cond, is_test=False, name=None):
1262
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1263
        self.status = While.BEFORE_WHILE_BLOCK
1264
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1265
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1266
            raise TypeError(
1267 1268 1269 1270
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
Y
Yang Yang(Tony) 已提交
1271
        self.cond_var = cond
C
chengduo 已提交
1272
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1273 1274 1275 1276

    def block(self):
        return WhileGuard(self)

1277
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1278 1279
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1280
        parent_block = main_program.block(
1281 1282
            main_program.current_block().parent_idx
        )
Y
Yang Yang(Tony) 已提交
1283 1284 1285

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1286
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
1287 1288
            while_block, x_name_list, inner_outputs, self.helper
        )
Y
Yang Yang(Tony) 已提交
1289 1290 1291

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1292 1293 1294
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1295

1296
        x_name_list |= set(map(lambda x: x.name, out_vars))
1297 1298 1299
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1300

Y
Yang Yang(Tony) 已提交
1301
        step_scope = parent_block.create_var(
1302 1303
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yang Yang(Tony) 已提交
1304 1305 1306 1307

        parent_block.append_op(
            type='while',
            inputs={
1308 1309 1310 1311 1312
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
1313
            },
1314 1315 1316
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )
Y
Yang Yang(Tony) 已提交
1317 1318


1319
support_ret_buildin_type = (bool, float, int)
1320 1321


1322
# (TODO: Mine) There exists dependency. It will be removed later.
1323
def assign_skip_lod_tensor_array(input, output):
1324
    """
1325
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1326
    """
1327 1328

    def has_shape_diff(x_var, y_var):
1329 1330
        if len(x_var.shape) != len(y_var.shape):
            return True
1331
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
1332 1333
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
1334 1335
        return False

1336
    if not isinstance(input, (Variable, core.VarBase)):
1337
        if isinstance(output, Variable) and isinstance(
1338 1339
            input, support_ret_buildin_type
        ):
1340 1341 1342
            assign(input, output)
        else:
            output = input
1343 1344
        return

1345 1346
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1347
        parent_block = main_program.block(
1348 1349
            main_program.current_block().parent_idx
        )
1350 1351 1352
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1353 1354 1355 1356 1357
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
1358
            warnings.warn(
1359 1360 1361 1362
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
1363
        assign(input, output)
1364 1365


1366
# (TODO: Mine) There exists dependency (jit.dy2static.convert_operators). It will be removed later.
G
guofei 已提交
1367
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1368
    """
1369 1370
    :api_attr: Static Graph

G
guofei 已提交
1371 1372
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1373 1374 1375 1376
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1377
    Args:
1378
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
1379
            as many arguments as ``loop_vars`` .
1380 1381 1382
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1383
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1384 1385
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1386

G
guofei 已提交
1387
    Returns:
C
Chen Long 已提交
1388
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1389 1390 1391 1392

    Examples:
        .. code-block:: python

1393 1394 1395
            import paddle
            paddle.enable_static()

1396 1397
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1398

1399 1400 1401
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1402

C
Chen Long 已提交
1403 1404 1405 1406 1407 1408
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1409

C
Chen Long 已提交
1410
                exe = paddle.static.Executor(paddle.CPUPlace())
1411
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1412 1413 1414 1415 1416 1417 1418 1419
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1420
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1421 1422 1423 1424
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1425 1426 1427
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop'
    )
G
guofei 已提交
1428 1429
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1430
            "the shape of the variable returned by cond should be [1],"
1431 1432
            "but given shape as {0}.".format(list(pre_cond.shape))
        )
G
guofei 已提交
1433

J
Jiabin Yang 已提交
1434
    if _non_static_mode():
1435
        now_cond = pre_cond.numpy()[0]
1436
        while now_cond:
1437 1438 1439 1440 1441 1442
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
1443 1444
                    "(length and structure) and types as loop_vars"
                )
1445
            now_cond = cond(*output_vars).numpy()[0]
1446
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1447 1448
        return loop_vars

G
guofei 已提交
1449
    while_loop_block = While(pre_cond, is_test, name)
1450
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1451
    with while_loop_block.block():
1452 1453 1454 1455 1456 1457 1458 1459 1460
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1461 1462
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1463
        try:
1464
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1465 1466
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1467 1468
            raise ValueError(
                "body in while_loop should return the same arity "
1469 1470
                "(length and structure) as loop_vars: {0}".format(e)
            )
1471
        now_cond = cond(*output_vars)
1472
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1473 1474 1475 1476
        assign(now_cond, pre_cond)
    return loop_vars


1477
# (TODO: Mine) There exists dependency. It will be removed later.
1478
def _deal_with_undefined_var(output_vars, loop_vars):
1479 1480 1481 1482 1483 1484 1485
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
1486
    """
1487
    from paddle.jit.dy2static.utils import (
1488 1489 1490
        UndefinedVar,
        create_undefined_variable,
    )
1491 1492

    def create_var_like(o_var):
1493 1494 1495 1496
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
1497
            return create_undefined_variable()
1498
        if is_sequence(o_var):
1499
            """
1500 1501 1502
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1516
def increment(x, value=1.0, in_place=True):
1517
    """
1518 1519
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1520

1521
    Parameters:
T
tianshuo78520a 已提交
1522
        x (Variable): A tensor that must always contain only one element, its data type supports
1523 1524 1525
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1526 1527

    Returns:
1528
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1529 1530 1531 1532

    Examples:
        .. code-block:: python

1533
          import paddle.fluid as fluid
1534 1535
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1536
    """
H
hong 已提交
1537
    if in_dygraph_mode():
1538
        return _C_ops.increment_(x, value)
H
hong 已提交
1539

1540 1541 1542
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
Y
Yu Yang 已提交
1543
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1544
    if not in_place:
X
Xin Pan 已提交
1545
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1546 1547
    else:
        out = x
1548 1549 1550 1551 1552 1553
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'step': float(value)},
    )
Y
Yang Yu 已提交
1554
    return out
Y
Yu Yang 已提交
1555 1556


1557
def array_write(x, i, array=None):
1558
    """
1559 1560 1561 1562
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1563 1564

    Args:
1565 1566 1567 1568
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1569 1570
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1571
            as a result.
1572

1573
    Returns:
1574
        Variable: The input ``array`` after ``x`` is written into.
1575 1576

    Examples:
D
dzhwinter 已提交
1577
        .. code-block:: python
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1602 1603
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1604 1605
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1606
    """
J
Jiabin Yang 已提交
1607
    if _non_static_mode():
1608 1609 1610 1611 1612 1613 1614 1615 1616
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1617
        i = i.numpy().item(0)
1618
        if array is None:
1619
            array = paddle.tensor.create_array(x.dtype)
1620
        assert isinstance(
1621 1622
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
1623 1624 1625 1626 1627 1628 1629 1630 1631
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1632 1633
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1634
    helper = LayerHelper('array_write', **locals())
1635
    if array is not None:
1636 1637 1638 1639
        if (
            not isinstance(array, Variable)
            or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1640
            raise TypeError(
1641 1642
                "array should be tensor array vairable in array_write Op"
            )
Y
Yu Yang 已提交
1643 1644 1645 1646
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1647 1648 1649 1650 1651 1652 1653
            dtype=x.dtype,
        )
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x], 'I': [i]},
        outputs={'Out': [array]},
    )
Y
Yu Yang 已提交
1654 1655 1656
    return array


1657
def array_read(array, i):
1658
    """
1659
    This OP is used to read data at the specified position from the input array
1660
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
1661
    is the specified read position. This OP is often used together with
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1674

K
kavyasrinet 已提交
1675
    Args:
1676 1677 1678
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1679

K
kavyasrinet 已提交
1680
    Returns:
1681
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1682

K
kavyasrinet 已提交
1683
    Examples:
1684 1685
        .. code-block:: python

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
1714 1715
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1716
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1717
    """
J
Jiabin Yang 已提交
1718
    if _non_static_mode():
1719
        assert isinstance(
1720 1721
            array, list
        ), "The 'array' in array_read must be list in dygraph mode"
1722 1723 1724 1725 1726 1727
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1728
        i = i.numpy().item(0)
1729 1730
        return array[i]

1731
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
1732
    helper = LayerHelper('array_read', **locals())
1733 1734 1735 1736
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
Y
Yu Yang 已提交
1737
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1738
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
1739 1740 1741 1742 1743
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array], 'I': [i]},
        outputs={'Out': [out]},
    )
Y
Yu Yang 已提交
1744
    return out
Y
Yang Yu 已提交
1745 1746


Y
Yu Yang 已提交
1747
class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1748
    """
1749 1750 1751
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1752 1753 1754
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1755
    def __init__(self, block):
1756
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
1757
        super().__init__(block.helper.main_program)
Y
Yu Yang 已提交
1758 1759 1760
        self.block = block

    def __enter__(self):
1761
        return super().__enter__()
Y
Yu Yang 已提交
1762 1763 1764

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
1765
        return super().__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
1766 1767


1768
class ConditionalBlock:
Y
Yan Chunwei 已提交
1769 1770 1771 1772 1773 1774 1775 1776
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
1777
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
1778 1779 1780 1781 1782
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
1783
             import paddle
1784
             import paddle.fluid as fluid
L
LiYuRio 已提交
1785
             cond = paddle.less_than(x=label, y=limit)
Y
Yan Chunwei 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1796
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1797
        for each_input in inputs:
1798
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
1799
        self.inputs = inputs
1800
        self.is_scalar_condition = is_scalar_condition
1801
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
1812 1813 1814
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper
        )
Y
Yu Yang 已提交
1815

1816 1817 1818
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
1819
        param_list = [
W
Wu Yi 已提交
1820
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1821 1822
        ]

X
Xin Pan 已提交
1823 1824 1825 1826 1827
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1828 1829

        step_scope = parent_block.create_var(
1830 1831
            type=core.VarDesc.VarType.STEP_SCOPES
        )
1832
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
1833 1834
            type='conditional_block',
            inputs={
1835 1836
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1837
            },
1838
            outputs={'Out': out_list, 'Scope': [step_scope]},
1839 1840
            attrs={
                'sub_block': inside_block,
1841 1842 1843
                'is_scalar_condition': self.is_scalar_condition,
            },
        )
1844

1845
        if self.need_append_conditional_block_grad(inside_block):
1846 1847 1848
            self.append_conditional_block_grad(
                parent_block, inside_block, conditional_block_op
            )
1849 1850 1851

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
1852
        inside_block_idx = inside_block.idx
1853

1854 1855
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
1856 1857 1858
        return (
            grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
        )
1859

1860 1861 1862
    def append_conditional_block_grad(
        self, parent_block, inside_block, conditional_block_op
    ):
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
1898
                param_list.append(inner_var.name)
1899 1900

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
1901 1902
            conditional_block_op.desc, set(), [grad_sub_block.desc]
        )
1903 1904 1905 1906 1907 1908 1909 1910 1911

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
1912 1913 1914
        new_op_desc.set_output(
            'Input@GRAD', [param + "@GRAD" for param in param_list]
        )
1915 1916 1917

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
1918 1919 1920 1921
            if (
                grad_sub_block.desc.has_var_recursive(grad_var_name.encode())
                or grad_var_name == core.empty_var_name()
            ):
1922
                continue
1923
            grad_sub_block.desc.var(grad_var_name.encode())
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

1938

1939
def copy_var_to_parent_block(var, layer_helper):
1940 1941
    if not isinstance(var, Variable):
        return var
1942 1943
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
1944 1945 1946
    assert (
        parent_idx >= 0
    ), "Got wrong parent block index when assigning var to parent scope in control_flow"
1947 1948
    parent_block = prog.block(parent_idx)

1949 1950 1951 1952
    if (
        var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        and parent_block._find_var_recursive(var.name)
    ):
1953 1954
        parent_block_var = var
    else:
1955 1956 1957
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type
        )
1958
        assign(var, parent_block_var)
1959 1960 1961
    return parent_block_var


1962
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
1963
    """
1964 1965 1966 1967 1968 1969 1970 1971 1972
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
1973 1974

    Note:
1975 1976 1977 1978
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

1979 1980 1981
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

1982
        3. If it is in static mode, any tensors or operations created outside
1983 1984 1985
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
1986 1987

        .. code-block:: python
1988 1989 1990 1991 1992

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
1993
            c = a * b
1994
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
1995

1996 1997 1998
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
1999 2000

    Args:
2001
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2002
            value determines whether to return the result of ``true_fn`` or
2003 2004 2005 2006 2007 2008
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2009
             don't have to set this parameter. For more information, please
2010
             refer to :ref:`api_guide_Name` .
2011 2012 2013
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2014
             be same with return values of true_fn and false_fn.
2015 2016

    Returns:
2017
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2018
        predicate ``pred`` is true else ``false_fn()`` .
2019 2020 2021

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2022 2023
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2024 2025 2026 2027

    Examples:
        .. code-block:: python

2028
            import paddle
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2039 2040 2041 2042
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2043

2044 2045

            def false_func():
2046 2047 2048 2049 2050
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2051

2052 2053
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2054
            pred = paddle.less_than(x=x, y=y, name=None)
2055
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2056
            # ret is a tuple containing 2 tensors
2057 2058
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2059
            #           [ True  True  True]]
2060

2061
    """
J
Jiabin Yang 已提交
2062
    if _non_static_mode():
2063
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2064
        assert pred.size == 1, "condition input's numel should be 1"
2065 2066 2067 2068 2069
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
2070 2071 2072 2073
                        "The true_fn in cond must be callable, but received {}".format(
                            type(true_fn).__name__
                        )
                    )
2074 2075 2076 2077 2078
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2079 2080 2081 2082
                        "The false_fn in cond must be callable, but received {}".format(
                            type(false_fn).__name__
                        )
                    )
2083 2084 2085
                return false_fn()
        return None

2086 2087
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2088 2089 2090
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2091
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2092 2093
    if true_fn is not None:
        if not callable(true_fn):
2094 2095
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
2096 2097 2098
                    type(true_fn).__name__
                )
            )
2099 2100 2101 2102
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2103 2104 2105
                true_output = map_structure(
                    copy_to_parent_func, origin_true_output
                )
2106 2107
    if false_fn is not None:
        if not callable(false_fn):
2108 2109
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
2110 2111 2112 2113
                    type(false_fn).__name__
                )
            )
        false_cond_block = ConditionalBlock(
2
201716010711 已提交
2114
            [paddle.logical_not(pred)], is_scalar_condition=True
2115
        )
2116 2117 2118
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2119 2120 2121
                false_output = map_structure(
                    copy_to_parent_func, origin_false_output
                )
2122 2123 2124 2125 2126 2127 2128

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2129 2130
            "true_fn returns None while false_fn returns non-None"
        )
2131 2132 2133
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2134 2135
            "true_fn returns non-None while false_fn returns None"
        )
2136

2137
    # Merge true and false output if they are not None
2138
    if return_names is None:
2139
        is_dy2staic = False
2140
        return_names = ["no name"] * len(_to_sequence_except_dict(true_output))
2141
    else:
2142
        """
2143 2144
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2145 2146 2147 2148 2149 2150 2151
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2152
        true_output, false_output = expand_undefined_var(
2153 2154
            true_output, false_output, return_names
        )
2155

2156 2157 2158
    if len(_to_sequence_except_dict(true_output)) != len(
        _to_sequence_except_dict(false_output)
    ):
2159
        raise ValueError(
2160
            "true fn returns {} vars, but false fn returns {} vars, which is not equals".format(
2161 2162
                len(_to_sequence_except_dict(true_output)),
                len(_to_sequence_except_dict(false_output)),
2163 2164 2165
            )
        )
    for true_out, false_out, return_name in zip(
2166 2167 2168
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2169
    ):
2170 2171 2172 2173
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
2174 2175 2176 2177
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format(
                    return_name, e
                )
            )
2178

2179
    def check_ret_none(seq_true, seq_false, seq_names):
2180 2181 2182
        for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names):
            f_true = flatten(f_true)
            f_false = flatten(f_false)
2183
            for idx in range(len(f_true)):
2184 2185 2186 2187 2188 2189
                if (
                    f_true[idx] is None
                    and f_false[idx] is not None
                    or f_false[idx] is None
                    and f_true[idx] is not None
                ):
2190 2191 2192 2193
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2194
                            f_name,
2195 2196 2197 2198 2199 2200 2201 2202
                            type(f_true[idx]),
                            f_true[idx],
                            type(f_false[idx]),
                            f_false[idx],
                        )
                    )

    check_ret_none(
2203 2204 2205
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
2206
    )
2207 2208 2209

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
2210 2211
            true_output, false_output
        )
2212

2213
    mask = cast(pred, dtype='int32')
2214 2215 2216 2217 2218
    merge_func = (
        lambda name, false_var, true_var: select_input_with_buildin_type(
            [false_var, true_var], mask, name
        )
    )
2219 2220 2221 2222 2223

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
2224 2225
        map(
            merge_every_var_list,
2226 2227 2228
            _to_sequence_except_dict(false_output),
            _to_sequence_except_dict(true_output),
            _to_sequence_except_dict(return_names),
2229 2230
        )
    )
2231
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2232 2233 2234
    return merged_output


2235
def change_none_to_undefinedvar(nest1, nest2):
2236
    from paddle.jit.dy2static.utils import UndefinedVar
2237 2238

    def map_fn(x):
2239 2240
        if x is None:
            return UndefinedVar("padding")
2241 2242 2243 2244 2245 2246 2247
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
def _to_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return [x]
    return to_sequence(x)


def _is_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return False
    return is_sequence(x)


2266
def expand_undefined_var(nest1, nest2, names):
2267 2268 2269 2270
    """TODO: make this function recursively.
    nest1: Var1, (UndefinedVar, [1,2,3])
    nest2: Var2, ([1,2,3,4], UndefinedVar)
    In this case, we should not expand recursively.
2271
    """
2272
    from paddle.jit.dy2static.utils import UndefinedVar
2273
    from paddle.jit.dy2static.return_transformer import (
2274 2275
        RETURN_VALUE_PREFIX,
    )
2276 2277

    def pack_undefined_var_as(seq):
2278 2279 2280
        return pack_sequence_as(
            seq, [UndefinedVar("padding") for i in flatten(seq)]
        )
2281

2282
    def map_fn(n1, n2, name, order):
2283 2284 2285
        if not name.startswith(RETURN_VALUE_PREFIX) and (
            isinstance(n1, UndefinedVar) or n1 is None
        ):
2286 2287 2288 2289 2290 2291
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2292 2293 2294
                            name, type(n1), n1, type(n2), n2
                        )
                    )
2295 2296 2297 2298 2299
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
2300 2301 2302
                            name, type(n2), n2, type(n1), n1
                        )
                    )
2303 2304 2305 2306
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
2307 2308
        map(
            map_fn,
2309 2310 2311 2312
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(names),
            [0 for i in _to_sequence_except_dict(names)],
2313 2314
        )
    )
2315
    nest2_out = list(
2316 2317
        map(
            map_fn,
2318 2319 2320 2321
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(names),
            [1 for i in _to_sequence_except_dict(names)],
2322 2323
        )
    )
2324
    if not _is_sequence_except_dict(nest1):
2325
        nest1_out = nest1_out[0]
2326
    if not _is_sequence_except_dict(nest2):
2327
        nest2_out = nest2_out[0]
2328 2329 2330
    return nest1_out, nest2_out


2331
class Switch:
Q
qiaolongfei 已提交
2332
    """
2333
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2334

2335 2336 2337 2338 2339
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
2340 2341
    only the statement following the default branch is executed.

2342 2343 2344 2345
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2346
    Member Functions:
2347
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2348

2349 2350 2351 2352 2353
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2354

2355 2356 2357 2358 2359 2360 2361 2362 2363
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2364

2365 2366
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2367 2368 2369

    Examples:
        .. code-block:: python
2370

2371
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2372

2373
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2374 2375 2376 2377 2378
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2379
            zero_var = fluid.layers.fill_constant(
2380
                shape=[1], dtype='float32', value=0.0)
2381
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2382
                shape=[1], dtype='float32', value=1.0)
2383
            two_var = fluid.layers.fill_constant(
2384
                shape=[1], dtype='float32', value=2.0)
2385

2386
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2387 2388

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2389
                with switch.case(global_step == zero_var):
2390
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2391
                with switch.default():
2392
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2393

2394 2395 2396 2397 2398
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2399 2400
    """

2401 2402 2403 2404 2405 2406 2407 2408 2409
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2410
        check_variable_and_dtype(
2411 2412 2413 2414 2415
            condition,
            'condition',
            ['bool'],
            'the member function case of fluid.layers.Switch',
        )
2416

2417 2418
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
2
201716010711 已提交
2419
            not_cond = paddle.logical_not(x=condition)
2420 2421 2422 2423
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2424
            new_not_cond = paddle.logical_and(
2
201716010711 已提交
2425
                x=pre_not_cond, y=paddle.logical_not(x=condition)
2426
            )
2427 2428
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2429
                [paddle.logical_and(x=pre_not_cond, y=condition)],
2430 2431
                is_scalar_condition=True,
            )
2432 2433 2434 2435 2436 2437 2438 2439 2440

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
2441 2442
            is_scalar_condition=True,
        )
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True