auto_parallel_grad_clip.py 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce

17 18
import numpy as np

19
import paddle
20
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
21

22 23 24 25
from ..auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
    TensorDistributedAttribute,
)
26
from ..auto_parallel.operators.common import SyncMode
27
from ..auto_parallel.process_group import get_world_process_group
28
from ..auto_parallel.reshard import Resharder
29 30
from ..auto_parallel.utils import (
    _get_comm_group,
31
    insert_dependencies_for_vars,
32 33
    is_gradient_clip_op,
    is_optimize_op,
34
    use_standalone_executor,
35
)
36
from .pass_base import PassBase, register_pass
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


def _get_params_grads(block):
    params_grads = []
    for op in reversed(block.ops):
        if not is_optimize_op(op):
            break
        if "Param" in op.input_names and "Grad" in op.input_names:
            param_name = op.input("Param")[0]
            grad_name = op.input("Grad")[0]
            param = block.var(param_name)
            grad = block.var(grad_name)
            params_grads.append((param, grad))
    return params_grads


def _get_dpmp_topology(origin_topology, sharding_group):
    """
    Get dpmp topology from origin_topology

    Example:
        the parallel strategy: dp4-mp2-sharding2
        the complete process_mesh:
            topology: [4, 2]
            processes: [0, 1, 2, 3, 4, 5, 6, 7]
        the dpmp topology: [2, 2]
        the sharding axis: 1
    """
    sharding_axis = 1
    dp_sharding_topology = [
67 68
        origin_topology[0] // sharding_group.nranks,
        sharding_group.nranks,
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    ]
    if dp_sharding_topology[0] == 1:
        sharding_axis = 0
        dp_sharding_topology = dp_sharding_topology[1:]

    product_dp_sharding = reduce(lambda x, y: x * y, dp_sharding_topology)
    product_topology = reduce(lambda x, y: x * y, origin_topology)

    if product_topology == product_dp_sharding:
        dpmp_topology = dp_sharding_topology
    else:
        assert product_topology % product_dp_sharding == 0
        mp_degree = product_topology // product_dp_sharding
        dpmp_topology = dp_sharding_topology + [mp_degree]

    return dpmp_topology, sharding_axis


def _get_dpmp_process_mesh(rank_id, topology, processes, sharding_group):
    """
    Get dpmp process_mesh from the complete process_mesh which apply sharding.

    Example:
        the parallel strategy: dp4-mp2-sharding2
        the complete process_mesh:
            topology: [4, 2]
            processes: [0, 1, 2, 3, 4, 5, 6, 7]
        the dpmp process_mesh is:
            1) topology: [2, 2], processes: [0, 1, 4, 5]
            2) topology: [2, 2], processes: [2, 3, 6, 7]
    """
    if sharding_group is None:
        return topology, processes

    # get dpmp_topology
    dpmp_topology, sharding_axis = _get_dpmp_topology(topology, sharding_group)

    # get all sharding_groups of ranks
    sharding_groups = []
    for rank in processes:
        group = _get_comm_group(processes, dpmp_topology, sharding_axis, rank)
        if group not in sharding_groups:
            sharding_groups.append(group)

    # get dpmp_processes
    sharding_groups = np.array(sharding_groups)
    dpmp_processes_in_sharding = None
    for i in range(sharding_groups.shape[-1]):
        if rank_id in sharding_groups[:, i]:
            dpmp_processes_in_sharding = sharding_groups[:, i]

    assert dpmp_processes_in_sharding is not None
    return dpmp_topology, list(dpmp_processes_in_sharding)


124 125 126
def _is_about_global_norm(
    rank_id, tensor_shape, topology, processes, dims_mapping, sharding_group
):
127 128
    # get current process_mesh where the parameter exist.
    dpmp_topology, dpmp_processes = _get_dpmp_process_mesh(
129 130
        rank_id, topology, processes, sharding_group
    )
131

132 133 134
    complete_shape = Resharder.compute_complete_shape(
        tensor_shape, dpmp_topology, dims_mapping
    )
135 136 137 138 139

    complete_partitions = []
    complete_param_ranks = []
    for process in dpmp_processes:
        partition_index = Resharder.compute_partition_index(
140 141
            process, complete_shape, dims_mapping, dpmp_topology, dpmp_processes
        )
142 143 144 145 146 147 148
        if partition_index not in complete_partitions:
            complete_partitions.append(partition_index)
            complete_param_ranks.append(process)

    return rank_id in complete_param_ranks


149
class ClipHelper:
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def __init__(self, params_grads, rank_id, block, dist_context):
        params, _ = zip(*params_grads)
        self.params = list(params)
        self.params_name = [p.name for p in self.params]
        self.rank_id = rank_id
        self.block = block
        self.dist_context = dist_context
        self.sharding_group = None
        self.world_ranks = get_world_process_group().ranks
        if hasattr(dist_context, '_sharding_group'):
            self.sharding_group = dist_context._sharding_group

    def _is_calcuate_norm(self, name):
        if not self._is_local_param(name):
            return False, []

        param = self.params[self.params_name.index(name)]
        dist_attr = self._get_dist_attr(name)
168 169
        topology = dist_attr.process_mesh.shape
        processes = dist_attr.process_mesh.process_ids
170
        dims_mapping = dist_attr.dims_mapping
171 172 173 174 175 176 177 178
        return _is_about_global_norm(
            self.rank_id,
            param.shape,
            topology,
            processes,
            dims_mapping,
            self.sharding_group,
        )
179 180 181 182 183 184 185 186 187 188 189 190 191

    def _get_dist_attr(self, name):
        var = self.block.vars[name]
        return self.dist_context.get_tensor_dist_attr_for_program(var)

    def _is_local_param(self, name):
        if name not in self.params_name:
            return False
        return True

    def _is_local_var(self, name):
        dist_attr = self._get_dist_attr(name)
        assert dist_attr is not None
192
        return self.rank_id in dist_attr.process_mesh.process_ids
193 194 195 196 197 198 199 200 201 202

    def _init_dist_attr(self, op):
        op_dist_attr = OperatorDistributedAttribute()
        op_dist_attr.process_mesh = self.world_ranks
        for in_name in op.input_arg_names:
            in_var = self.block.vars[in_name]
            in_dist_attr = TensorDistributedAttribute()
            in_dist_attr.process_mesh = self.world_ranks
            in_dist_attr.dims_mapping = [-1]
            self.dist_context.set_tensor_dist_attr_for_program(
203 204
                in_var, in_dist_attr
            )
205 206 207 208 209 210 211
            op_dist_attr.set_input_dist_attr(in_name, in_dist_attr)
        for out_name in op.output_arg_names:
            out_var = self.block.vars[out_name]
            out_dist_attr = TensorDistributedAttribute()
            out_dist_attr.process_mesh = self.world_ranks
            out_dist_attr.dims_mapping = [-1]
            self.dist_context.set_tensor_dist_attr_for_program(
212 213
                out_var, out_dist_attr
            )
214 215 216 217 218 219 220 221 222 223 224 225 226
            op_dist_attr.set_output_dist_attr(out_name, out_dist_attr)
        self.dist_context.set_op_dist_attr_for_program(op, op_dist_attr)


@register_pass("auto_parallel_grad_clip")
class ClipGradByGloblNormPass(PassBase):
    """
    1. Remove norm-compute op and grad-scale op when the grad is not in current rank
       or is independent of the calculation of norm.
    2. Each rank computes its own norm value, then gets global_norm by allreduce_sum only once.
    """

    def __init__(self):
227
        super().__init__()
228 229
        self.set_attr("rank_id", None)
        self.set_attr("dist_context", None)
230
        self.set_attr("params_grads", None)
231 232 233 234 235

    def _check_self(self):
        if self.get_attr("dist_context") is None:
            return False
        dist_context = self.get_attr("dist_context")
Z
zhaoyingli 已提交
236
        if dist_context._serial_optimizer._grad_clip is None:
237
            return False
238 239
        if self.get_attr("params_grads") is None:
            return False
240 241 242 243 244 245 246 247 248
        return True

    def _check_conflict(self, other_pass):
        return True

    def _apply_single_impl(self, main_program, startup_program, context):
        dist_context = self.get_attr("dist_context", None)
        rank_id = self.get_attr("rank_id", None)
        block = main_program.global_block()
249 250
        dist_params_grads = self.get_attr("params_grads", None)
        # dist_params_grads = _get_params_grads(block)
251

252 253 254
        self.clip_helper = ClipHelper(
            dist_params_grads, rank_id, block, dist_context
        )
255 256 257 258 259
        self._remove_no_need_ops_vars(block)

    def _remove_no_need_ops_vars(self, block):

        removed_op_out_type = [
260 261 262 263
            'clip_by_norm',
            'squared_l2_norm',
            'square',
            'reduce_sum',
264 265 266 267 268 269 270 271 272 273 274
        ]

        removed_op_idx = set()
        removed_tmp_var = set()
        for idx, op in enumerate(block.ops):
            if not is_gradient_clip_op(op):
                continue

            if op.type in removed_op_out_type:
                input_name = op.input("X")[0]
                if input_name.find("@GRAD") != -1:
275
                    # 'clip_by_norm', 'squared_l2_norm', 'square'
276
                    param_name = input_name[: input_name.find("@GRAD")]
277 278
                    is_local = self.clip_helper._is_local_param(param_name)
                    is_calculate = self.clip_helper._is_calcuate_norm(
279 280 281 282 283
                        param_name
                    )
                    if not is_local or (
                        not is_calculate and op.type != 'clip_by_norm'
                    ):
284 285 286 287 288 289 290 291 292 293 294
                        removed_op_idx.add(idx)
                        removed_tmp_var.update(set(op.output_arg_names))
                else:
                    # 'reduce_sum'
                    if idx - 1 in removed_op_idx:
                        removed_op_idx.add(idx)
                        removed_tmp_var.update(set(op.output_arg_names))

            elif op.type == 'elementwise_mul':
                input_name = op.input("X")[0]
                if input_name.find("@GRAD") != -1:
295
                    param_name = input_name[: input_name.find("@GRAD")]
296 297 298 299 300 301
                    is_local = self.clip_helper._is_local_param(param_name)
                    if not is_local:
                        removed_op_idx.add(idx)
                        if block.ops[idx - 1].type == 'cast':
                            removed_op_idx.add(idx - 1)
                            removed_tmp_var.update(
302 303
                                set(block.ops[idx - 1].output_arg_names)
                            )
304 305 306 307

            elif op.type == 'sum':
                reserved_vars = []
                for input_name in op.input_arg_names:
308 309 310 311
                    if (
                        input_name not in removed_tmp_var
                        and self.clip_helper._is_local_var(input_name)
                    ):
312 313 314 315 316 317 318
                        reserved_vars.append(input_name)
                if not reserved_vars:
                    removed_op_idx.add(idx)
                    removed_tmp_var.update(set(op.output_arg_names))
                    if block.ops[idx + 1].type == 'cast':
                        removed_op_idx.add(idx + 1)
                        removed_tmp_var.update(
319 320
                            set(block.ops[idx + 1].output_arg_names)
                        )
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
                else:
                    op.desc.set_input("X", reserved_vars)

        for idx, op in reversed(list(enumerate(block.ops))):
            if not is_optimize_op(op):
                break
            if not is_gradient_clip_op(op):
                continue
            if idx in removed_op_idx:
                block._remove_op(idx, sync=False)

        for idx, op in reversed(list(enumerate(block.ops))):
            if not is_optimize_op(op):
                break
            if not is_gradient_clip_op(op):
                continue
            if op.type == 'sqrt':
                input_name = op.input("X")[0]
                input_var = block.vars[input_name]
340
                insert_leaf_fill_constant_node = False
341 342 343 344 345 346 347 348 349 350 351 352 353 354
                if paddle.distributed.get_world_size() > 1:
                    offset = 0
                    if input_name in removed_tmp_var:
                        removed_tmp_var.remove(input_name)
                        fill_constant_op = block._insert_op(
                            idx,
                            type='fill_constant',
                            inputs={},
                            outputs={'Out': [input_var]},
                            attrs={
                                'shape': [1],
                                'dtype': input_var.dtype,
                                'value': 0,
                                'force_cpu': False,
355 356 357 358 359 360
                                OP_ROLE_KEY: OpRole.Optimize,
                            },
                        )
                        fill_constant_op._set_attr(
                            'op_namescope', "/gradient_clip_pass"
                        )
361 362
                        offset += 1
                        self.clip_helper._init_dist_attr(fill_constant_op)
363
                        insert_leaf_fill_constant_node = True
364 365 366 367 368 369 370 371 372 373

                    allreduce_op = block._insert_op(
                        idx + offset,
                        type='c_allreduce_sum',
                        inputs={'X': [input_var]},
                        outputs={'Out': [input_var]},
                        attrs={
                            'ring_id': 0,
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Optimize,
374 375
                        },
                    )
376
                    # TODO better regular the usage of op namescope
377
                    allreduce_op._set_attr(
378
                        'op_namescope', str('/') + SyncMode.GlobalNormSync
379
                    )
380 381
                    self.clip_helper._init_dist_attr(allreduce_op)

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                    if (
                        use_standalone_executor
                        and insert_leaf_fill_constant_node
                    ):

                        # NOTE add naive deps for global norm sync in graph exe
                        j = idx - 1
                        prior_op = None
                        while j > 0:
                            op_type = block.ops[j].type
                            if op_type in [
                                'update_loss_scaling',
                                'check_finite_and_unscale',
                            ] or op_type.endswith("_grad"):
                                prior_op = block.ops[j]
                                break
                            j -= 1
                        assert (
                            prior_op is not None
401
                        ), "Unexpected: ClipByGlobalNorm could not find priory depend op"
402 403 404
                        prior_var = block.vars[prior_op.output_arg_names[0]]
                        assert (
                            prior_var is not None
405 406
                        ), "Unexpected: ClipByGlobalNorm could not find priory depend var"
                        insert_dependencies_for_vars(
407 408 409 410 411 412 413 414 415 416 417
                            block,
                            idx,
                            prior_var,
                            input_var,
                            self.clip_helper.dist_context,
                            OpRole.Optimize,
                            process_mesh=[
                                -1
                            ],  # hack to avoid initialize the dist attr for coalesc var
                            is_recompute=False,
                            sync=False,
418
                            op_namescope="grad_clip_fill_constant_dep",
419 420
                        )

421 422 423 424
        for varname in removed_tmp_var:
            block._remove_var(varname, sync=False)

        block._sync_with_cpp()