sequence_expand_op.cc 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/sequence_expand_op.h"
W
wanghaoshuang 已提交
16 17 18 19

namespace paddle {
namespace operators {

Y
yangyaming 已提交
20
using framework::LoDTensor;
W
wanghaoshuang 已提交
21

W
wanghaoshuang 已提交
22
class SequenceExpandOp : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of SequenceExpandOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SequenceExpandOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
Y
yangyaming 已提交
36
    auto out_dims = x_dims;
Y
yangyaming 已提交
37 38
    int ref_level = ctx->Attrs().Get<int>("ref_level");

Y
yangyaming 已提交
39 40
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Dimension number of Input(X) should be at least 2.");
Y
yangyaming 已提交
41 42 43 44 45 46 47 48 49 50 51

    if (ctx->IsRuntime()) {
      framework::Variable* x_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
      framework::Variable* y_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Y")[0]);

      auto& x_lod = x_var->Get<LoDTensor>().lod();
      auto& y_lod = y_var->Get<LoDTensor>().lod();

      PADDLE_ENFORCE_LE(x_lod.size(), 1,
Y
yangyaming 已提交
52
                        "Level number of Input(X)'s lod should not be "
Y
yangyaming 已提交
53
                        "greater than 1.");
Y
yangyaming 已提交
54 55 56 57 58 59 60 61 62 63 64
      PADDLE_ENFORCE_GT(y_lod.size(), 0,
                        "Level number of Input(Y)'s lod should be "
                        "greater than 0.");
      PADDLE_ENFORCE(
          ref_level == -1 ||
              (ref_level >= 0 && ref_level < static_cast<int>(y_lod.size())),
          "Invlid `ref_level`, which should be either equal to -1 "
          "or in [0, %d)",
          y_lod.size());

      if (ref_level == -1) ref_level = y_lod.size() - 1;
Y
yangyaming 已提交
65

Y
yangyaming 已提交
66
      if (x_lod.size() > 0) {
Y
yangyaming 已提交
67 68 69 70
        PADDLE_ENFORCE(x_lod[0].size() == y_lod[ref_level].size(),
                       "Level number of Input(X)'s lod could be 0. Otherwise "
                       "size of Input(X)'s first level lod should be equal to "
                       "size of Input(Y)'s referred level lod.");
Y
yangyaming 已提交
71 72
      }

Y
yangyaming 已提交
73
      int64_t out_first_dim = 0;
Y
yangyaming 已提交
74
      if (y_lod[ref_level].size() <= 1) {
Y
yangyaming 已提交
75 76
        out_first_dim = x_dims[0];
      } else {
Y
yangyaming 已提交
77 78 79 80
        for (size_t i = 1; i < y_lod[ref_level].size(); ++i) {
          int x_seq_len = 1;
          if (x_lod.size() == 1) {
            x_seq_len = x_lod[0][i] - x_lod[0][i - 1];
Y
yangyaming 已提交
81
          }
Y
yangyaming 已提交
82 83
          out_first_dim +=
              (y_lod[ref_level][i] - y_lod[ref_level][i - 1]) * x_seq_len;
Y
yangyaming 已提交
84 85
        }
      }
Y
yangyaming 已提交
86
      out_dims[0] = out_first_dim;
Y
yangyaming 已提交
87
    } else {
Y
yangyaming 已提交
88
      out_dims[0] = -1;
Y
yangyaming 已提交
89
    }
D
dzhwinter 已提交
90 91
    ctx->SetOutputDim("Out", out_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
W
wanghaoshuang 已提交
92 93 94
  }
};

W
wanghaoshuang 已提交
95
class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
96
 public:
Y
Yu Yang 已提交
97
  void Make() override {
W
wanghaoshuang 已提交
98
    AddInput("X",
Y
yangyaming 已提交
99 100
             "(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor whose lod "
             "level is at most 1.");
W
wanghaoshuang 已提交
101
    AddInput("Y",
Y
yangyaming 已提交
102 103
             "(LoDTensor, default LoDTensor<float>) Referred LoDTensor whose "
             "lod (specified level) is referred by Input(X).");
W
wanghaoshuang 已提交
104
    AddOutput("Out",
Y
yangyaming 已提交
105 106
              "(LodTensor, default LoDTensor<float>) Output LoDTensor which is "
              "generated from Input(X) by referring lod of Input(Y).");
Y
yangyaming 已提交
107
    AddAttr<int>("ref_level", "Specify lod level of Input(Y).").SetDefault(-1);
W
wanghaoshuang 已提交
108
    AddComment(R"DOC(
W
wanghaoshuang 已提交
109
Sequence Expand Operator.
W
wanghaoshuang 已提交
110

Y
yangyaming 已提交
111 112 113 114 115 116 117
This operator expands `X` according to specified level lod of `Y`. Current
implementation constaints that lod level of `X` should be at most 1. Attribute
`ref_level` is used to specify which level lod of `Y` is referred to expand `X`.
If set `ref_level` to -1, then last level lod of `Y` would be referred.
Please note, rank of `X` should be at least 2, when the rank exceeds 2, `X`
would be viewed as a 2-D tensor.

118
Following are cases to better explain how this works:
Y
yangyaming 已提交
119

W
wanghaoshuang 已提交
120
Case 1:
W
wanghaoshuang 已提交
121

Y
yangyaming 已提交
122 123 124
Given a 1-level LoDTensor input(X)
    X.lod =  [[0,   2,        4]]
    X.data = [[a], [b], [c], [d]]
W
wanghaoshuang 已提交
125 126 127 128
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 7, 8]]
Y
yangyaming 已提交
129 130 131 132
ref_level: 0
then we get 1-level LoDTensor
    Out.lod =  [[0,   2,        4,        6,        8]]
    Out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
W
wanghaoshuang 已提交
133
    Out.dims = [8, 1]
W
wanghaoshuang 已提交
134 135 136

Case 2:

Y
yangyaming 已提交
137 138 139 140 141 142 143 144 145
Given 1-level LoDTensor input(X)
    X.lod =  [[0,   1,        4]]
    X.data = [[a], [b], [c], [d]]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 6, 8]]
ref_level: 0
then we get 1-level LoDTensor
146
    Out.lod =  [[0,   1,   2,        5,             8]]
Y
yangyaming 已提交
147 148 149 150 151
    Out.data = [[a], [a], [b], [c], [d], [b], [c], [d]]
    Out.dims = [8, 1]

Case 3:

W
wanghaoshuang 已提交
152
Given a common Tensor input(X)
Y
yangyaming 已提交
153
    X.data = [[a], [b], [c]]
W
wanghaoshuang 已提交
154 155 156
    X.dims = [3, 1]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
157
ref_level: -1
158
then we get a common Tensor
Y
yangyaming 已提交
159
    Out.data = [[a], [a], [b], [c], [c], [c]]
W
wanghaoshuang 已提交
160
    Out.dims = [6, 1]
W
wanghaoshuang 已提交
161

Y
yangyaming 已提交
162
Case 4:
W
wanghaoshuang 已提交
163

W
wanghaoshuang 已提交
164
Given a common Tensor input(X)
W
wanghaoshuang 已提交
165 166 167 168
    X.data = [[a, b], [c, d], [e, f]]
    X.dims = [3, 2]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
Y
yangyaming 已提交
169 170 171
ref_level: 0
then we get a common LoDTensor
    Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
W
wanghaoshuang 已提交
172 173
    Out.dims = [6, 2]

W
wanghaoshuang 已提交
174 175 176 177
)DOC");
  }
};

W
wanghaoshuang 已提交
178
class SequenceExpandOpGrad : public framework::OperatorWithKernel {
W
wanghaoshuang 已提交
179 180 181 182 183
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
yangyaming 已提交
184 185
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should not be null.");
W
wanghaoshuang 已提交
186
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
Y
yangyaming 已提交
187 188
                   "Input(Out@GRAD) should not be null.");

W
wanghaoshuang 已提交
189 190
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
Y
yangyaming 已提交
191

W
wanghaoshuang 已提交
192 193 194 195 196 197 198 199 200 201
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
202 203
REGISTER_OPERATOR(sequence_expand, ops::SequenceExpandOp,
                  ops::SequenceExpandOpMaker,
204 205
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(sequence_expand_grad, ops::SequenceExpandOpGrad);
Q
QI JUN 已提交
206
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
207
    sequence_expand,
Y
yangyaming 已提交
208 209 210 211
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandKernel<paddle::platform::CPUDeviceContext, int64_t>);
W
wanghaoshuang 已提交
212
REGISTER_OP_CPU_KERNEL(
W
wanghaoshuang 已提交
213
    sequence_expand_grad,
Y
yangyaming 已提交
214 215 216 217
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SequenceExpandGradKernel<paddle::platform::CPUDeviceContext, int64_t>);