fleet_wrapper.h 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#ifdef PADDLE_WITH_PSLIB
19
#include <archive.h>
D
dongdaxiang 已提交
20
#include <pslib.h>
21
#endif
22
#include <ThreadPool.h>
23

24
#include <atomic>
X
xujiaqi01 已提交
25
#include <ctime>
D
dongdaxiang 已提交
26
#include <map>
D
dongdaxiang 已提交
27
#include <random>
28
#include <string>
29
#include <unordered_map>
30
#include <vector>
31

T
Thunderbrook 已提交
32
#include "paddle/fluid/framework/heter_util.h"
D
dongdaxiang 已提交
33
#include "paddle/fluid/framework/program_desc.h"
34
#include "paddle/fluid/framework/scope.h"
35
#include "paddle/fluid/framework/tensor.h"
36 37
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h"  // for DISABLE_COPY_AND_ASSIGN
T
Thunderbrook 已提交
38
#ifdef PADDLE_WITH_HETERPS
39
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
T
Thunderbrook 已提交
40
#endif
41
#include "paddle/fluid/framework/fleet/heter_ps/log_patch.h"
42

W
wanghuancoder 已提交
43 44 45 46 47 48
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
namespace paddle {
namespace framework {

// A wrapper class for pslib.h, this class follows Singleton pattern
// i.e. only initialized once in the current process
// Example:
//    std::shared_ptr<FleetWrapper> fleet_ptr =
//         FleetWrapper::GetInstance();
//    string dist_desc;
//    fleet_ptr->InitServer(dist_desc, 0);
// interface design principles:
// Pull
//   Sync: PullSparseVarsSync
//   Async: PullSparseVarsAsync(not implemented currently)
// Push
//   Sync: PushSparseVarsSync
65 66
//   Async: PushSparseVarsAsync(not implemented currently)
//   Async: PushSparseVarsWithLabelAsync(with special usage)
67 68 69 70 71 72 73
// Push dense variables to server in Async mode
// Param<in>: scope, table_id, var_names
// Param<out>: push_sparse_status

class FleetWrapper {
 public:
  virtual ~FleetWrapper() {}
74 75 76 77
  FleetWrapper() {
    scale_sparse_gradient_with_batch_size_ = true;
    // trainer sleep some time for pslib core dump
    sleep_seconds_before_fail_exit_ = 300;
78 79 80 81 82 83
    // pslib request server timeout ms
    client2client_request_timeout_ms_ = 500000;
    // pslib connect server timeout_ms
    client2client_connect_timeout_ms_ = 10000;
    // pslib request max retry
    client2client_max_retry_ = 3;
84
    pull_local_thread_num_ = 25;
85
  }
86

X
xujiaqi01 已提交
87
  // set client to client communication config
88 89
  void SetClient2ClientConfig(int request_timeout_ms,
                              int connect_timeout_ms,
90 91
                              int max_retry);

92 93 94
  void SetPullLocalThreadNum(int thread_num) {
    pull_local_thread_num_ = thread_num;
  }
95

T
Thunderbrook 已提交
96
#ifdef PADDLE_WITH_PSLIB
97 98
  void HeterPullSparseVars(int workerid,
                           std::shared_ptr<HeterTask> task,
T
Thunderbrook 已提交
99 100 101 102 103 104
                           const uint64_t table_id,
                           const std::vector<std::string>& var_names,
                           int fea_dim,
                           const std::vector<std::string>& var_emb_names);

  void HeterPushSparseVars(
105 106 107 108 109 110
      std::shared_ptr<HeterTask> task,
      const Scope& scope,
      const uint64_t table_id,
      const std::vector<std::string>& sparse_key_names,
      const std::vector<std::string>& sparse_grad_names,
      const int emb_dim,
T
Thunderbrook 已提交
111
      std::vector<::std::future<int32_t>>* push_sparse_status,
112 113 114
      const bool use_cvm,
      const bool dump_slot,
      const bool no_cvm);
T
Thunderbrook 已提交
115 116 117 118 119
#endif

  typedef std::function<void(int, int)> HeterCallBackFunc;
  int RegisterHeterCallback(HeterCallBackFunc handler);

X
xujiaqi01 已提交
120
  // Pull sparse variables from server in sync mode
121
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim, var_emb_names
122
  // Param<out>: fea_values
123 124
  void PullSparseVarsSync(const Scope& scope,
                          const uint64_t table_id,
125 126 127
                          const std::vector<std::string>& var_names,
                          std::vector<uint64_t>* fea_keys,
                          std::vector<std::vector<float>>* fea_values,
128 129
                          int fea_dim,
                          const std::vector<std::string>& var_emb_names);
130 131 132 133

  // Pull sparse variables from server in async mode
  // Param<in>: scope, table_id, var_names, fea_keys, fea_dim
  // Param<out>: fea_values std::future
134
  std::future<int32_t> PullSparseVarsAsync(
135 136
      const Scope& scope,
      const uint64_t table_id,
137 138
      const std::vector<std::string>& var_names,
      std::vector<uint64_t>* fea_keys,
139 140
      std::vector<std::vector<float>>* fea_values,
      int fea_dim);
141 142 143

  // Pull sparse variables from server in sync mode
  // pull immediately to tensors
144 145 146 147
  void PullSparseToTensorSync(const uint64_t table_id,
                              int fea_dim,
                              uint64_t padding_id,
                              platform::Place place,
148 149 150
                              std::vector<const LoDTensor*>* inputs,  // NOLINT
                              std::vector<LoDTensor*>* outputs);      // NOLINT

X
xujiaqi01 已提交
151
  // pull dense variables from server in sync mod
152 153
  // Param<in>: scope, table_id, var_names
  // Param<out>: void
154 155
  void PullDenseVarsSync(const Scope& scope,
                         const uint64_t table_id,
156 157
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
158 159 160
  // pull dense variables from server in async mod
  // Param<in>: scope, table_id, var_names
  // Param<out>: pull_dense_status
161
  void PullDenseVarsAsync(
162 163
      const Scope& scope,
      const uint64_t table_id,
164
      const std::vector<std::string>& var_names,
165 166
      std::vector<::std::future<int32_t>>* pull_dense_status,
      bool in_cpu);
167

X
xujiaqi01 已提交
168
  // push dense parameters(not gradients) to server in sync mode
169 170
  void PushDenseParamSync(const Scope& scope,
                          const uint64_t table_id,
D
dongdaxiang 已提交
171
                          const std::vector<std::string>& var_names);
172

T
Thunderbrook 已提交
173 174 175
// Push dense variables to server in async mode
// Param<in>: scope, table_id, var_names, scale_datanorm, batch_size
// Param<out>: push_sparse_status
176
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
T
Thunderbrook 已提交
177
  void PushDenseVarsAsync(
178 179
      const Scope& scope,
      const uint64_t table_id,
T
Thunderbrook 已提交
180 181
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* push_sparse_status,
182 183 184 185
      float scale_datanorm,
      int batch_size,
      const paddle::platform::Place& place,
      gpuStream_t stream,
186
      gpuEvent_t event);
T
Thunderbrook 已提交
187 188 189
#endif
#ifdef PADDLE_WITH_XPU
  void PushDenseVarsAsync(
190 191
      const Scope& scope,
      const uint64_t table_id,
T
Thunderbrook 已提交
192 193
      const std::vector<std::string>& var_names,
      std::vector<::std::future<int32_t>>* push_sparse_status,
194 195
      float scale_datanorm,
      int batch_size,
T
Thunderbrook 已提交
196
      const paddle::platform::Place& place);
T
Thunderbrook 已提交
197
#endif
198
  void PushDenseVarsAsync(
199 200
      const Scope& scope,
      const uint64_t table_id,
201
      const std::vector<std::string>& var_names,
202
      std::vector<::std::future<int32_t>>* push_sparse_status,
203 204
      float scale_datanorm,
      int batch_size);
205

X
xujiaqi01 已提交
206
  // push dense variables to server in sync mode
207 208
  void PushDenseVarsSync(Scope* scope,
                         const uint64_t table_id,
D
dongdaxiang 已提交
209 210
                         const std::vector<std::string>& var_names);

X
xujiaqi01 已提交
211
  // Push sparse variables with labels to server in async mode
212 213
  std::vector<std::unordered_map<uint64_t, std::vector<float>>> local_tables_;
  void PullSparseToLocal(const uint64_t table_id, int fea_value_dim);
214 215
  void PullSparseVarsFromLocal(const Scope& scope,
                               const uint64_t table_id,
216 217 218 219 220 221 222 223 224
                               const std::vector<std::string>& var_names,
                               std::vector<uint64_t>* fea_keys,
                               std::vector<std::vector<float>>* fea_values,
                               int fea_value_dim);
  void ClearLocalTable();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
  GetLocalTable() {
    return local_tables_;
  }
225

226
  // This is specially designed for click/show stats in server
X
xujiaqi01 已提交
227 228
  // Param<in>: scope, table_id, fea_keys, fea_labels, sparse_key_names,
  //            sparse_grad_names, batch_size, use_cvm, dump_slot
229 230
  // Param<out>: push_values, push_sparse_status
  void PushSparseVarsWithLabelAsync(
231 232
      const Scope& scope,
      const uint64_t table_id,
233 234 235
      const std::vector<uint64_t>& fea_keys,
      const std::vector<float>& fea_labels,
      const std::vector<std::string>& sparse_key_names,
236 237
      const std::vector<std::string>& sparse_grad_names,
      const int emb_dim,
238
      std::vector<std::vector<float>>* push_values,
239
      std::vector<::std::future<int32_t>>* push_sparse_status,
240 241 242 243 244
      const int batch_size,
      const bool use_cvm,
      const bool dump_slot,
      std::vector<uint64_t>* sparse_push_keys,
      const bool no_cvm,
245
      const bool scale_sparse_gradient_with_batch_size);
246

247 248
  // Push sparse variables to server in async mode
  void PushSparseFromTensorWithLabelAsync(
249 250 251 252 253 254 255 256
      const Scope& scope,
      const uint64_t table_id,
      int fea_dim,
      uint64_t padding_id,
      bool scale_sparse,
      const std::string& accesor,
      const std::string& click_name,
      platform::Place place,
257 258 259 260
      const std::vector<std::string>& input_names,
      std::vector<const LoDTensor*>* inputs,    // NOLINT
      std::vector<const LoDTensor*>* outputs);  // NOLINT

261 262 263 264 265 266 267 268 269 270 271 272 273
  // Push sparse variables to server in Async mode
  // Param<In>: scope, table_id, fea_keys, sparse_grad_names
  // Param<Out>: push_values, push_sparse_status
  /*
  void PushSparseVarsAsync(
          const Scope& scope,
          const uint64_t table_id,
          const std::vector<uint64_t>& fea_keys,
          const std::vector<std::string>& sparse_grad_names,
          std::vector<std::vector<float>>* push_values,
          std::vector<::std::future<int32_t>>* push_sparse_status);
  */

X
xujiaqi01 已提交
274
  // init server
275
  void InitServer(const std::string& dist_desc, int index);
X
xujiaqi01 已提交
276
  // init trainer
277
  void InitWorker(const std::string& dist_desc,
278 279
                  const std::vector<uint64_t>& host_sign_list,
                  int node_num,
280
                  int index);
X
xujiaqi01 已提交
281
  // stop server
282
  void StopServer();
283 284
  // finalize worker to make worker can be stop
  void FinalizeWorker();
X
xujiaqi01 已提交
285
  // run server
286
  uint64_t RunServer();
287 288
  // run server with ip port
  uint64_t RunServer(const std::string& ip, uint32_t port);
X
xujiaqi01 已提交
289
  // gather server ip
290
  void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
X
xjqbest 已提交
291
  // gather client ip
X
xjqbest 已提交
292
  void GatherClients(const std::vector<uint64_t>& host_sign_list);
X
xjqbest 已提交
293
  // get client info
X
xjqbest 已提交
294
  std::vector<uint64_t> GetClientsInfo();
X
xjqbest 已提交
295
  // create client to client connection
X
xjqbest 已提交
296
  void CreateClient2ClientConnection();
297 298
  // flush all push requests
  void ClientFlush();
299
  // load from paddle model
300 301
  void LoadFromPaddleModel(Scope& scope,
                           const uint64_t table_id,  // NOLINT
302
                           std::vector<std::string> var_list,
303 304
                           std::string model_path,
                           std::string model_proto_file,
305
                           std::vector<std::string> table_var_list,
306
                           bool load_combine);
307 308

  void PrintTableStat(const uint64_t table_id);
309
  void SetFileNumOneShard(const uint64_t table_id, int file_num);
310
  // mode = 0, load all feature
X
xujiaqi01 已提交
311
  // mode = 1, load delta feature, which means load diff
312
  void LoadModel(const std::string& path, const int mode);
313
  // mode = 0, load all feature
X
xujiaqi01 已提交
314
  // mode = 1, load delta feature, which means load diff
315 316
  void LoadModelOneTable(const uint64_t table_id,
                         const std::string& path,
317
                         const int mode);
318 319 320
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
  void SaveModel(const std::string& path, const int mode);
321
  void SaveMultiTableOnePath(const std::vector<int>& table_ids,
322 323
                             const std::string& path,
                             const int mode);
X
xujiaqi01 已提交
324 325
  // mode = 0, save all feature
  // mode = 1, save delta feature, which means save diff
326 327
  void SaveModelOneTable(const uint64_t table_id,
                         const std::string& path,
X
xujiaqi01 已提交
328 329
                         const int mode);
  // save model with prefix
330 331 332 333
  void SaveModelOneTablePrefix(const uint64_t table_id,
                               const std::string& path,
                               const int mode,
                               const std::string& prefix);
X
xujiaqi01 已提交
334
  // get save cache threshold
335
  double GetCacheThreshold(int table_id);
X
xujiaqi01 已提交
336
  // shuffle cache model between servers
337 338 339
  void CacheShuffle(int table_id,
                    const std::string& path,
                    const int mode,
340
                    const double cache_threshold);
X
xujiaqi01 已提交
341 342
  // save cache model
  // cache model can speed up online predict
343
  int32_t SaveCache(int table_id, const std::string& path, const int mode);
344
  // save sparse table filtered by user-defined whitelist
345 346 347 348 349 350
  int32_t SaveWithWhitelist(int table_id,
                            const std::string& path,
                            const int mode,
                            const std::string& whitelist_path);
  void LoadWithWhitelist(const uint64_t table_id,
                         const std::string& path,
351
                         const int mode);
X
xujiaqi01 已提交
352 353 354 355 356 357 358
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTable(const uint64_t src_table_id, const uint64_t dest_table_id);
  // copy feasign key/value from src_table_id to dest_table_id
  int32_t CopyTableByFeasign(const uint64_t src_table_id,
                             const uint64_t dest_table_id,
                             const std::vector<uint64_t>& feasign_list);
  // clear all models, release their memory
359
  void ClearModel();
X
xujiaqi01 已提交
360 361
  // clear one table
  void ClearOneTable(const uint64_t table_id);
X
xujiaqi01 已提交
362
  // shrink sparse table
363
  void ShrinkSparseTable(int table_id);
X
xujiaqi01 已提交
364
  // shrink dense table
365 366 367 368
  void ShrinkDenseTable(int table_id,
                        Scope* scope,
                        std::vector<std::string> var_list,
                        float decay,
369
                        int emb_dim);
370

D
dongdaxiang 已提交
371
  typedef std::function<int32_t(int, int, const std::string&)> MsgHandlerFunc;
X
xujiaqi01 已提交
372
  // register client to client communication
373
  int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler);
X
xjqbest 已提交
374
  // send client to client message
375 376
  std::future<int32_t> SendClientToClientMsg(int msg_type,
                                             int to_client_id,
D
dongdaxiang 已提交
377
                                             const std::string& msg);
378 379 380 381
  // confirm all the updated params in the current pass
  void Confirm();
  // revert all the updated params in the current pass
  void Revert();
X
xujiaqi01 已提交
382
  // FleetWrapper singleton
383 384 385 386 387 388
  static std::shared_ptr<FleetWrapper> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::FleetWrapper());
    }
    return s_instance_;
  }
389 390 391
  // this performs better than rand_r, especially large data
  std::default_random_engine& LocalRandomEngine();

392 393
  void SetDate(const uint64_t table_id, const std::string& date);

394 395 396 397
#ifdef PADDLE_WITH_PSLIB
  static std::shared_ptr<paddle::distributed::PSlib> pslib_ptr_;
#endif

398 399
 private:
  static std::shared_ptr<FleetWrapper> s_instance_;
X
xjqbest 已提交
400
#ifdef PADDLE_WITH_PSLIB
X
xujiaqi01 已提交
401
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
X
xjqbest 已提交
402
#endif
403

404 405 406
  size_t GetAbsoluteSum(size_t start,
                        size_t end,
                        size_t level,
407 408
                        const framework::LoD& lod);

409
 protected:
410
  static bool is_initialized_;
411
  bool scale_sparse_gradient_with_batch_size_;
412
  int32_t sleep_seconds_before_fail_exit_;
413 414 415
  int client2client_request_timeout_ms_;
  int client2client_connect_timeout_ms_;
  int client2client_max_retry_;
416 417 418 419
  std::unique_ptr<::ThreadPool> local_pull_pool_{nullptr};
  int pull_local_thread_num_;
  std::unique_ptr<::ThreadPool> pull_to_local_pool_{nullptr};
  int local_table_shard_num_;
420 421 422 423 424
  DISABLE_COPY_AND_ASSIGN(FleetWrapper);
};

}  // end namespace framework
}  // end namespace paddle