convolution_kernel.cc 5.0 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/cpu/convolution.h"
Z
zhangkaihuo 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"

namespace phi {
namespace sparse {

/**
 * x: (N, D, H, W, C)
 * kernel: (D, H, W, C, OC)
 * out: (N, D, H, W, OC)
**/
template <typename T, typename Context>
void Conv3dKernel(const Context& dev_ctx,
                  const SparseCooTensor& x,
                  const DenseTensor& kernel,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const int groups,
Z
zhangkaihuo 已提交
38
                  const bool subm,
Z
zhangkaihuo 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
                  SparseCooTensor* out,
                  DenseTensor* rulebook) {
  // update padding and dilation
  // Currently, only support x.layout is NDHWC, groups = 1
  // if x.layout != NDHWC then transpose(x), transpose(weight)

  const auto& x_dims = x.dims();
  const auto& kernel_dims = kernel.dims();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  DDim out_dims = {1, 1, 1, 1, 1};
  GetOutShape(x_dims, kernel_dims, paddings, dilations, strides, &out_dims);
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

  // Second algorithm:
  // https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
  // 1. product rulebook
  DenseTensorMeta counter_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));

  ProductRuleBook<T, Context>(dev_ctx,
                              x,
                              kernel,
                              paddings,
                              dilations,
                              strides,
                              out_dims,
Z
zhangkaihuo 已提交
67
                              subm,
Z
zhangkaihuo 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                              rulebook,
                              &counter_per_kernel);

  UpdateRulebookAndOutIndex<T>(
      dev_ctx, x, kernel_size, out_channels, out_dims, rulebook, out);

  int n = rulebook->dims()[1];
  const int* counter_ptr = counter_per_kernel.data<int>();

  // 2. gather
  DenseTensorMeta in_features_meta(
      x.dtype(), {n, in_channels}, DataLayout::NHWC);
  DenseTensorMeta out_features_meta(
      x.dtype(), {n, out_channels}, DataLayout::NHWC);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor out_features =
      phi::Empty(dev_ctx, std::move(out_features_meta));
  T* in_features_ptr = in_features.data<T>();
  T* out_features_ptr = out_features.data<T>();

  Gather<T>(x.non_zero_elements().data<T>(),
            rulebook->data<int>() + n,
            n,
            in_channels,
            in_features_ptr);

  // 3. call gemm for every werght
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
  std::vector<int> offsets(kernel_size + 1);
  int offset = 0;
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
    offset += counter_ptr[i];
  }
  offsets[kernel_size] = offset;

  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
    if (counter_ptr[i] <= 0) {
      continue;
    }

    // call gemm: (n, in_channels) * (in_channels, out_channels)
    const int M = counter_ptr[i];
    const int K = in_channels;   // in_channels
    const int N = out_channels;  // out_channels
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * K * N;
    T* tmp_out_ptr = out_features_ptr + offsets[i] * out_channels;
    blas.GEMM(CblasNoTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_out_ptr);
  }

  // 4. scatter
  T* out_values_ptr = out->mutable_non_zero_elements()->data<T>();
  memset(out_values_ptr, 0, sizeof(T) * out->nnz() * out_channels);
  Scatter<T>(out_features_ptr,
             rulebook->data<int>() + n * 2,
             n,
             out_channels,
             out_values_ptr);
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(
    sparse_conv3d, CPU, ALL_LAYOUT, phi::sparse::Conv3dKernel, float, double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}