test_elementwise_min_op.py 7.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

F
fengjiayi 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
S
sneaxiy 已提交
20 21 22 23 24
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core

paddle.enable_static()
F
fengjiayi 已提交
25 26 27 28 29


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_min"
30
        self.python_api = paddle.minimum
F
fengjiayi 已提交
31
        # If x and y have the same value, the min() is not differentiable.
F
fengjiayi 已提交
32 33
        # So we generate test data by the following method
        # to avoid them being too close to each other.
34 35 36
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
F
fengjiayi 已提交
37 38 39 40
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
41 42 43 44
        if hasattr(self, 'attrs'):
            self.check_output(check_eager=False)
        else:
            self.check_output(check_eager=True)
F
fengjiayi 已提交
45 46

    def test_check_grad_normal(self):
47 48 49 50
        if hasattr(self, 'attrs'):
            self.check_grad(['X', 'Y'], 'Out', check_eager=False)
        else:
            self.check_grad(['X', 'Y'], 'Out', check_eager=True)
F
fengjiayi 已提交
51 52 53 54 55 56 57 58 59 60

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))


61 62
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
63 64 65
class TestElementwiseMinOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
66
        self.python_api = paddle.minimum
67 68
        x = np.random.random_integers(-5, 5, [10, 3, 4]).astype("float64")
        y = np.array([0.5]).astype("float64")
69 70 71 72
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


73
class TestElementwiseMinOp_Vector(TestElementwiseOp):
F
fengjiayi 已提交
74 75
    def setUp(self):
        self.op_type = "elementwise_min"
76
        self.python_api = paddle.minimum
77 78 79
        x = np.random.random((100, )).astype("float64")
        sgn = np.random.choice([-1, 1], (100, )).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, (100, )).astype("float64")
F
fengjiayi 已提交
80 81 82 83
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


84
class TestElementwiseMinOp_broadcast_0(TestElementwiseOp):
F
fengjiayi 已提交
85 86
    def setUp(self):
        self.op_type = "elementwise_min"
87
        self.python_api = paddle.minimum
88 89
        x = np.random.uniform(0.5, 1, (100, 3, 2)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
90
        y = x[:, 0, 0] + sgn * \
91
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
92 93 94 95 96
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
97
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
F
fengjiayi 已提交
98 99 100
        }


101
class TestElementwiseMinOp_broadcast_1(TestElementwiseOp):
F
fengjiayi 已提交
102 103
    def setUp(self):
        self.op_type = "elementwise_min"
104
        self.python_api = paddle.minimum
105 106
        x = np.random.uniform(0.5, 1, (2, 100, 3)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
107
        y = x[0, :, 0] + sgn * \
108
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
109 110 111 112 113
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
114
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1))
F
fengjiayi 已提交
115 116 117
        }


118
class TestElementwiseMinOp_broadcast_2(TestElementwiseOp):
F
fengjiayi 已提交
119 120
    def setUp(self):
        self.op_type = "elementwise_min"
121
        self.python_api = paddle.minimum
122 123
        x = np.random.uniform(0.5, 1, (2, 3, 100)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (100, )).astype(np.float64)
F
fengjiayi 已提交
124
        y = x[0, 0, :] + sgn * \
125
            np.random.uniform(1, 2, (100, )).astype(np.float64)
F
fengjiayi 已提交
126 127 128 129
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {
            'Out':
130
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100))
F
fengjiayi 已提交
131 132 133
        }


134
class TestElementwiseMinOp_broadcast_3(TestElementwiseOp):
F
fengjiayi 已提交
135 136
    def setUp(self):
        self.op_type = "elementwise_min"
137
        self.python_api = paddle.minimum
138 139
        x = np.random.uniform(0.5, 1, (2, 25, 4, 1)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (25, 4)).astype(np.float64)
F
fengjiayi 已提交
140
        y = x[0, :, :, 0] + sgn * \
141
            np.random.uniform(1, 2, (25, 4)).astype(np.float64)
F
fengjiayi 已提交
142 143 144 145 146
        self.inputs = {'X': x, 'Y': y}

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
147
            np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 25, 4, 1))
F
fengjiayi 已提交
148 149 150
        }


151 152 153
class TestElementwiseMinOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_min"
154
        self.python_api = paddle.minimum
155 156
        x = np.random.uniform(0.5, 1, (2, 10, 2, 5)).astype(np.float64)
        sgn = np.random.choice([-1, 1], (2, 10, 1, 5)).astype(np.float64)
157
        y = x + sgn * \
158
            np.random.uniform(1, 2, (2, 10, 1, 5)).astype(np.float64)
159 160 161 162 163
        self.inputs = {'X': x, 'Y': y}

        self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}


S
sneaxiy 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class TestElementwiseMinOpFP16(unittest.TestCase):
    def get_out_and_grad(self, x_np, y_np, axis, place, use_fp32=False):
        assert x_np.dtype == np.float16
        assert y_np.dtype == np.float16
        if use_fp32:
            x_np = x_np.astype(np.float32)
            y_np = y_np.astype(np.float32)
        dtype = np.float16

        with fluid.dygraph.guard(place):
            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
            x.stop_gradient = False
            y.stop_gradient = False
            z = fluid.layers.elementwise_min(x, y, axis)
            x_g, y_g = paddle.grad([z], [x, y])
            return z.numpy().astype(dtype), x_g.numpy().astype(
                dtype), y_g.numpy().astype(dtype)

    def check_main(self, x_shape, y_shape, axis=-1):
        if not paddle.is_compiled_with_cuda():
            return
        place = paddle.CUDAPlace(0)
        if not core.is_float16_supported(place):
            return

        x_np = np.random.random(size=x_shape).astype(np.float16)
        y_np = np.random.random(size=y_shape).astype(np.float16)

        z_1, x_g_1, y_g_1 = self.get_out_and_grad(x_np, y_np, axis, place,
                                                  False)
        z_2, x_g_2, y_g_2 = self.get_out_and_grad(x_np, y_np, axis, place, True)
        self.assertTrue(np.array_equal(z_1, z_2), "{} vs {}".format(z_1, z_2))
        self.assertTrue(
            np.array_equal(x_g_1, x_g_2), "{} vs {}".format(x_g_1, x_g_2))
        self.assertTrue(
            np.array_equal(y_g_1, y_g_2), "{} vs {}".format(y_g_1, y_g_2))

    def test_main(self):
        self.check_main((13, 17), (13, 17))
        self.check_main((10, 3, 4), (1, ))
        self.check_main((100, ), (100, ))
        self.check_main((100, 3, 2), (100, ), 0)
        self.check_main((2, 100, 3), (100, ), 1)
        self.check_main((2, 3, 100), (100, ))
        self.check_main((2, 25, 4, 1), (25, 4), 1)
        self.check_main((2, 10, 2, 5), (2, 10, 1, 5))


F
fengjiayi 已提交
213 214
if __name__ == '__main__':
    unittest.main()