box_wrapper.cc 9.9 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

H
hutuxian 已提交
15
#ifdef PADDLE_WITH_BOX_PS
H
hutuxian 已提交
16
#include "paddle/fluid/framework/fleet/box_wrapper.h"
H
hutuxian 已提交
17
#include <algorithm>
H
hutuxian 已提交
18 19 20 21 22 23 24 25 26 27
#include <ctime>
#include <memory>
#include <numeric>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/platform/gpu_info.h"

namespace paddle {
namespace framework {

std::shared_ptr<BoxWrapper> BoxWrapper::s_instance_ = nullptr;
H
hutuxian 已提交
28 29
cudaStream_t BoxWrapper::stream_list_[8];
std::shared_ptr<boxps::BoxPSBase> BoxWrapper::boxps_ptr_ = nullptr;
H
hutuxian 已提交
30

H
hutuxian 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
void BasicAucCalculator::compute() {
  double* table[2] = {&_table[0][0], &_table[1][0]};

  double area = 0;
  double fp = 0;
  double tp = 0;

  for (int i = _table_size - 1; i >= 0; i--) {
    double newfp = fp + table[0][i];
    double newtp = tp + table[1][i];
    area += (newfp - fp) * (tp + newtp) / 2;
    fp = newfp;
    tp = newtp;
  }

  if (fp < 1e-3 || tp < 1e-3) {
    _auc = -0.5;  // which means all nonclick or click
  } else {
    _auc = area / (fp * tp);
  }

  _mae = _local_abserr / (fp + tp);
  _rmse = sqrt(_local_sqrerr / (fp + tp));
  _actual_ctr = tp / (fp + tp);
  _predicted_ctr = _local_pred / (fp + tp);
  _size = fp + tp;
H
hutuxian 已提交
57 58
}

H
hutuxian 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
void BasicAucCalculator::calculate_bucket_error() {
  double last_ctr = -1;
  double impression_sum = 0;
  double ctr_sum = 0.0;
  double click_sum = 0.0;
  double error_sum = 0.0;
  double error_count = 0;
  double* table[2] = {&_table[0][0], &_table[1][0]};
  for (int i = 0; i < _table_size; i++) {
    double click = table[1][i];
    double show = table[0][i] + table[1][i];
    double ctr = static_cast<double>(i) / _table_size;
    if (fabs(ctr - last_ctr) > kMaxSpan) {
      last_ctr = ctr;
      impression_sum = 0.0;
      ctr_sum = 0.0;
      click_sum = 0.0;
    }
    impression_sum += show;
    ctr_sum += ctr * show;
    click_sum += click;
    double adjust_ctr = ctr_sum / impression_sum;
    double relative_error =
        sqrt((1 - adjust_ctr) / (adjust_ctr * impression_sum));
    if (relative_error < kRelativeErrorBound) {
      double actual_ctr = click_sum / impression_sum;
      double relative_ctr_error = fabs(actual_ctr / adjust_ctr - 1);
      error_sum += relative_ctr_error * impression_sum;
      error_count += impression_sum;
      last_ctr = -1;
    }
  }
  _bucket_error = error_count > 0 ? error_sum / error_count : 0.0;
}

H
hutuxian 已提交
94
// Deprecated: should use BeginFeedPass & EndFeedPass
H
hutuxian 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
void BoxWrapper::FeedPass(int date,
                          const std::vector<uint64_t>& feasgin_to_box) const {
  int ret = boxps_ptr_->FeedPass(date, feasgin_to_box);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                "FeedPass failed in BoxPS."));
}

void BoxWrapper::BeginFeedPass(int date, boxps::PSAgentBase** agent) const {
  int ret = boxps_ptr_->BeginFeedPass(date, *agent);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                "BeginFeedPass failed in BoxPS."));
}

void BoxWrapper::EndFeedPass(boxps::PSAgentBase* agent) const {
  int ret = boxps_ptr_->EndFeedPass(agent);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                "EndFeedPass failed in BoxPS."));
H
hutuxian 已提交
112 113 114 115
}

void BoxWrapper::BeginPass() const {
  int ret = boxps_ptr_->BeginPass();
H
hutuxian 已提交
116 117
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                "BeginPass failed in BoxPS."));
H
hutuxian 已提交
118 119
}

120 121
void BoxWrapper::EndPass(bool need_save_delta) const {
  int ret = boxps_ptr_->EndPass(need_save_delta);
H
hutuxian 已提交
122 123
  PADDLE_ENFORCE_EQ(
      ret, 0, platform::errors::PreconditionNotMet("EndPass failed in BoxPS."));
H
hutuxian 已提交
124 125 126 127 128 129 130
}

void BoxWrapper::PullSparse(const paddle::platform::Place& place,
                            const std::vector<const uint64_t*>& keys,
                            const std::vector<float*>& values,
                            const std::vector<int64_t>& slot_lengths,
                            const int hidden_size) {
H
hutuxian 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143
  VLOG(3) << "Begin PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_boxps_timer;
  all_timer.Start();

  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf =
      memory::AllocShared(place, total_length * sizeof(boxps::FeatureValueGpu));
  boxps::FeatureValueGpu* total_values_gpu =
      reinterpret_cast<boxps::FeatureValueGpu*>(buf->ptr());

  if (platform::is_cpu_place(place)) {
H
hutuxian 已提交
144 145
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in PaddleBox now."));
H
hutuxian 已提交
146 147 148 149 150 151 152
  } else if (platform::is_gpu_place(place)) {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = boost::get<platform::CUDAPlace>(place).GetDeviceId();
    LoDTensor& total_keys_tensor = keys_tensor[device_id];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));
H
hutuxian 已提交
153

H
hutuxian 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::AllocShared(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::AllocShared(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in BoxPS";
    pull_boxps_timer.Start();
    int ret =
        boxps_ptr_->PullSparseGPU(total_keys, total_values_gpu,
                                  static_cast<int>(total_length), device_id);
    PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                  "PullSparseGPU failed in BoxPS."));
    pull_boxps_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Please compile WITH_GPU option, because NCCL doesn't support "
        "windows."));
#endif
H
hutuxian 已提交
191
  } else {
H
hutuxian 已提交
192 193
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddleBox: PullSparse Only Support CPUPlace or CUDAPlace Now."));
H
hutuxian 已提交
194
  }
H
hutuxian 已提交
195 196 197 198 199
  all_timer.Pause();
  VLOG(1) << "PullSparse total costs: " << all_timer.ElapsedSec()
          << " s, of which BoxPS costs: " << pull_boxps_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
H
hutuxian 已提交
200 201 202 203 204 205
}

void BoxWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                const std::vector<const uint64_t*>& keys,
                                const std::vector<const float*>& grad_values,
                                const std::vector<int64_t>& slot_lengths,
H
hutuxian 已提交
206 207 208 209 210 211 212 213 214 215 216 217
                                const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_boxps_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  auto buf = memory::AllocShared(
      place, total_length * sizeof(boxps::FeaturePushValueGpu));
  boxps::FeaturePushValueGpu* total_grad_values_gpu =
      reinterpret_cast<boxps::FeaturePushValueGpu*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
H
hutuxian 已提交
218 219
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in PaddleBox now."));
H
hutuxian 已提交
220
  } else if (platform::is_gpu_place(place)) {
H
hutuxian 已提交
221
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
H
hutuxian 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    int device_id = boost::get<platform::CUDAPlace>(place).GetDeviceId();
    LoDTensor& cached_total_keys_tensor = keys_tensor[device_id];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to boxps struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in BoxPS";
    push_boxps_timer.Start();
    int ret = boxps_ptr_->PushSparseGPU(
        total_keys, total_grad_values_gpu, static_cast<int>(total_length),
        boost::get<platform::CUDAPlace>(place).GetDeviceId());
    PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
                                  "PushSparseGPU failed in BoxPS."));
    push_boxps_timer.Pause();
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Please compile WITH_GPU option, because NCCL doesn't support "
        "windows."));
H
hutuxian 已提交
242 243
#endif
  } else {
H
hutuxian 已提交
244 245
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddleBox: PushSparseGrad Only Support CPUPlace or CUDAPlace Now."));
H
hutuxian 已提交
246
  }
H
hutuxian 已提交
247 248 249 250 251
  all_timer.Pause();
  VLOG(1) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
          << " s, of which BoxPS cost: " << push_boxps_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
H
hutuxian 已提交
252 253 254
}
}  // end namespace framework
}  // end namespace paddle
H
hutuxian 已提交
255
#endif