framework.py 180.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'ComplexVariable',
53
    'load_op_library',
54
    'require_version',
55
    'device_guard',
G
guofei 已提交
56 57
    'set_flags',
    'get_flags',
58
]
Y
Yu Yang 已提交
59

Q
qiaolongfei 已提交
60 61 62 63
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
64 65
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
66 67
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
68
_current_device = None
69

70 71
global_prog_seed = 0

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
180
def in_dygraph_mode():
L
lujun 已提交
181
    """
Y
Youwei Song 已提交
182
    This function checks whether the program runs in dynamic graph mode or not.
183 184 185
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
186 187

    Returns:
Y
Youwei Song 已提交
188
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
189 190 191 192

    Examples:
        .. code-block:: python

193
            import paddle.fluid as fluid
L
lujun 已提交
194

195 196 197 198
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
199
    """
L
lujun 已提交
200
    return _dygraph_tracer_ is not None
201 202


203 204 205
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
206
        ), "We don't support %s in imperative mode" % func.__name__
207 208 209 210 211 212 213 214
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
215
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
216 217 218 219 220
        return func(*args, **kwargs)

    return __impl__


221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


237 238
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
239
fake_interface_only = wrap_decorator(_fake_interface_only_)
240 241


L
lujun 已提交
242 243
def _dygraph_tracer():
    return _dygraph_tracer_
244

W
Wu Yi 已提交
245

M
minqiyang 已提交
246
def _current_expected_place():
L
lujun 已提交
247
    return _dygraph_current_expected_place_
M
minqiyang 已提交
248 249


L
Leo Chen 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
267
def _cpu_num():
268
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
269 270 271 272 273 274 275 276
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
277
        os.environ['CPU_NUM'] = str(1)
278
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
279 280 281 282 283 284 285 286 287 288
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
289 290


C
chengduo 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
306
def cuda_places(device_ids=None):
L
lujun 已提交
307
    """
308 309 310 311 312
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
313 314

    If :code:`device_ids` is None, environment variable of
315
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
316 317 318
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
319
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
320 321

    If :code:`device_ids` is not None, it should be the device
322
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
323 324 325
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
326 327
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
328 329

    Returns:
330
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
331 332 333 334

    Examples:
        .. code-block:: python

335
            import paddle.fluid as fluid
L
lujun 已提交
336 337 338
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
339 340 341
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
342
        device_ids = _cuda_ids()
S
sneaxiy 已提交
343 344 345 346 347 348
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
349
    """
350
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
351 352 353
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
354 355
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
356 357
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
358

359 360
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
361 362

    Returns:
363
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
364 365 366 367

    Examples:
        .. code-block:: python

368
            import paddle.fluid as fluid
L
lujun 已提交
369 370 371
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
372 373 374 375 376 377
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
378
    """
379
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
380 381 382

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
383 384 385 386
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
387

388 389
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
390 391

    Returns:
392
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
393 394 395 396

    Examples:
        .. code-block:: python

397
            import paddle.fluid as fluid
L
lujun 已提交
398 399 400 401 402
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
403 404 405
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
406 407
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
408 409


410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
436
@signature_safe_contextmanager
437 438 439 440
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
441 442 443
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
444 445

    Args:
T
Tao Luo 已提交
446
        prefix(str, optional): prefix. Default is none.
447 448 449

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
450

451
          import paddle.fluid as fluid
452
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
453 454 455 456 457 458
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
459
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
460
                f = fluid.layers.pow(d, 2.0)
461
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
481 482
    """
    # TODO(panyx0718): Only [0-9a-z].
483
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
484 485 486
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
487
        assert prefix, "namescope prefix can not be empty."
488 489 490 491
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
492 493 494 495 496 497 498 499 500 501 502 503


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
504 505 506
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
507 508 509 510


def grad_var_name(var_name):
    """
511 512
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
513 514 515
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
516

517
def convert_np_dtype_to_dtype_(np_dtype):
518 519
    """
    Convert the data type in numpy to the data type in Paddle
520

521
    Args:
522
        np_dtype(np.dtype): the data type in numpy.
523

524 525
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
526 527

    """
528 529
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
530
        return core.VarDesc.VarType.FP32
531
    elif dtype == np.float64:
532
        return core.VarDesc.VarType.FP64
533
    elif dtype == np.float16:
534
        return core.VarDesc.VarType.FP16
535
    elif dtype == np.int32:
536
        return core.VarDesc.VarType.INT32
537
    elif dtype == np.int16:
538
        return core.VarDesc.VarType.INT16
539
    elif dtype == np.int64:
540
        return core.VarDesc.VarType.INT64
541
    elif dtype == np.bool:
542
        return core.VarDesc.VarType.BOOL
543 544
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
545 546
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
547 548
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
549
    else:
M
minqiyang 已提交
550
        raise ValueError("Not supported numpy dtype %s" % dtype)
551 552 553


def dtype_is_floating(dtype):
554 555 556
    """
    Check the data type is floating or not.
    Args:
557
        dtype(np.dtype|core.VarDesc.VarType): data type.
558 559 560 561 562
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
563
    if not isinstance(dtype, core.VarDesc.VarType):
564 565
        dtype = convert_np_dtype_to_dtype_(dtype)

566 567 568 569
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
570 571


Y
Yang Yang(Tony) 已提交
572
def _debug_string_(proto, throw_on_error=True):
573 574 575 576 577 578 579 580 581 582 583
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
584
    error_fields = list()
Y
Yang Yang(Tony) 已提交
585
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
586 587
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
588 589 590
    return proto.__str__()


591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
743

744
    # starts
L
Leo Chen 已提交
745
    if contain_var(slice_start):
746 747 748 749 750 751 752 753
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
754 755 756 757
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
758 759 760 761 762 763 764
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
765 766 767
    else:
        attrs['ends'] = slice_end

768 769
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
770
        if contain_var(slice_step):
771 772 773 774 775 776 777
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
778 779
        else:
            attrs['strides'] = slice_step
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
827
class Variable(object):
828
    """
J
Jiabin Yang 已提交
829
    **Notes**:
830
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
831

832 833
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
834 835 836
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
837
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
838 839
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
840

841
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
842
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
843

T
tianshuo78520a 已提交
844
    Most of a Variable's member variables can be set to be None. It mean
845
    it is not available or will be specified later.
846

847
    Examples:
848 849
        In Static Graph Mode:

850 851
        .. code-block:: python

852
            import paddle.fluid as fluid
853
            cur_program = fluid.Program()
854 855 856 857
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
858
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
859 860 861 862 863 864 865 866 867

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

868 869
    """

Y
Yu Yang 已提交
870 871
    def __init__(self,
                 block,
Y
Yu Yang 已提交
872
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
873 874 875 876
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
877
                 capacity=None,
Q
QI JUN 已提交
878
                 persistable=None,
F
fengjiayi 已提交
879
                 error_clip=None,
Y
Yu Yang 已提交
880
                 stop_gradient=False,
F
fengjiayi 已提交
881
                 is_data=False,
H
Huihuang Zheng 已提交
882
                 need_check_feed=False,
H
hong 已提交
883
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
884
                 **kwargs):
Y
Yu Yang 已提交
885 886
        self.block = block
        if name is None:
Y
Yu Yang 已提交
887
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
888

Y
Yu Yang 已提交
889
        if dtype is not None:
890
            if not isinstance(dtype, core.VarDesc.VarType):
891
                dtype = convert_np_dtype_to_dtype_(dtype)
892

H
hong 已提交
893 894
        self.belong_to_optimizer = belong_to_optimizer

895 896 897 898 899
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
900

901 902 903
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
904

905 906 907 908 909 910 911
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
912

913
        if shape is not None:
914
            if is_new_var:
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
956

957 958
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
959

960 961 962 963 964 965 966
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
967

968 969 970 971
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
972

973
    @fake_interface_only
974 975
    def detach(self):
        """
J
Jiabin Yang 已提交
976
        **Notes**:
T
tianshuo78520a 已提交
977
            **This API is ONLY available in Dygraph mode**
978

979
        Returns a new Variable, detached from the current graph.
980

981
        Returns:
J
Jiabin Yang 已提交
982
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
983

984

985 986 987 988 989
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
990
                from paddle.fluid.dygraph import Linear
991 992 993 994
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
995
                    linear = Linear(32, 64)
996
                    data = to_variable(data)
997
                    x = linear(data)
998 999 1000
                    y = x.detach()

        """
1001
        pass
1002

1003
    @fake_interface_only
1004
    def numpy(self):
1005
        """
J
Jiabin Yang 已提交
1006
        **Notes**:
T
tianshuo78520a 已提交
1007
            **This API is ONLY available in Dygraph mode**
1008

J
Jiabin Yang 已提交
1009
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1010 1011 1012 1013 1014

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1015
            ndarray: dtype is same as current Variable
1016 1017 1018 1019 1020 1021

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1022
                from paddle.fluid.dygraph import Linear
1023 1024 1025 1026
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1027
                    linear = Linear(32, 64)
1028
                    data = to_variable(data)
1029
                    x = linear(data)
1030 1031 1032
                    print(x.numpy())

        """
1033
        pass
1034

1035
    @fake_interface_only
1036 1037
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1038
        **Notes**:
T
tianshuo78520a 已提交
1039
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1051
                from paddle.fluid.dygraph import Linear
1052 1053
                import numpy as np

1054
                data = np.ones([3, 1024], dtype='float32')
1055
                with fluid.dygraph.guard():
1056
                    linear = fluid.dygraph.Linear(1024, 4)
1057
                    t = to_variable(data)
1058
                    linear(t)  # call with default weight
1059
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1060 1061
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1062 1063

        """
1064
        pass
1065

1066
    @fake_interface_only
1067
    def backward(self, backward_strategy=None):
1068
        """
J
Jiabin Yang 已提交
1069
        **Notes**:
T
tianshuo78520a 已提交
1070
            **This API is ONLY available in Dygraph mode**
1071 1072 1073

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1074 1075
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1076

J
Jiabin Yang 已提交
1077 1078
        Returns:
            NoneType: None
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1091 1092
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1093 1094 1095 1096 1097 1098 1099 1100 1101
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1102
        pass
1103

1104
    @fake_interface_only
1105
    def gradient(self):
1106
        """
J
Jiabin Yang 已提交
1107
        **Notes**:
T
tianshuo78520a 已提交
1108
            **This API is ONLY available in Dygraph mode**
1109 1110 1111

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1112
        Returns:
1113
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1114 1115 1116 1117 1118 1119 1120

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1121
                # example1: return ndarray
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1149
        """
1150
        pass
1151

1152
    @fake_interface_only
1153
    def clear_gradient(self):
1154
        """
J
Jiabin Yang 已提交
1155
        **Notes**:
T
tianshuo78520a 已提交
1156
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1157 1158

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1159

J
Jiabin Yang 已提交
1160
        Clear  (set to ``0`` ) the Gradient of Current Variable
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1187
        pass
X
Xin Pan 已提交
1188

1189
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1190 1191
        return self.to_string(True)

F
update  
fengjiayi 已提交
1192
    def to_string(self, throw_on_error, with_details=False):
1193 1194 1195
        """
        Get debug string.

J
Jiabin Yang 已提交
1196 1197 1198 1199 1200
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1201

1202 1203
        Returns:
            str: The debug string.
1204 1205 1206 1207 1208

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1209

1210 1211 1212 1213 1214
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1215
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1216
                print("=============with detail===============")
1217
                print(new_variable.to_string(True, True))
1218
        """
F
update  
fengjiayi 已提交
1219 1220
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1221
        protostr = self.desc.serialize_to_string()
1222
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1223 1224 1225 1226
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1227 1228 1229
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1230
        return res_str
1231 1232 1233

    __repr__ = __str__

1234
    @property
1235
    def stop_gradient(self):
J
Jiabin Yang 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1251 1252
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1253 1254 1255
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1256 1257
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1258 1259 1260 1261
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1262
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1263 1264
                assert (out1.gradient() == 0).all()
        """
1265
        return self._stop_gradient
1266

1267 1268
    @stop_gradient.setter
    def stop_gradient(self, s):
1269
        self._stop_gradient = s
1270

1271 1272
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1294
        return self.desc.persistable()
1295

Y
Yu Yang 已提交
1296 1297
    @persistable.setter
    def persistable(self, p):
1298
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1299

Y
Yu Yang 已提交
1300 1301
    @property
    def name(self):
J
Jiabin Yang 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1318
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1340 1341
    @name.setter
    def name(self, new_name):
1342
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1343

Y
Yu Yang 已提交
1344 1345
    @property
    def shape(self):
J
Jiabin Yang 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1363
        # convert to tuple, make it as same as numpy API.
1364
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1365 1366

    @property
F
fengjiayi 已提交
1367
    def dtype(self):
J
Jiabin Yang 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1384
        return self.desc.dtype()
Y
Yu Yang 已提交
1385 1386 1387

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1409 1410 1411
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1412
        return self.desc.lod_level()
Y
Yu Yang 已提交
1413

Y
Yu Yang 已提交
1414 1415
    @property
    def type(self):
J
Jiabin Yang 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1432
        return self.desc.type()
Y
Yu Yang 已提交
1433

W
Wu Yi 已提交
1434
    def _set_error_clip(self, error_clip):
1435 1436 1437 1438 1439 1440 1441 1442 1443
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1444 1445
        self.error_clip = error_clip

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1486
            raise ValueError("slice step can not be zero")
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1562
    def _cloneVar(self, copy=False):
1563 1564
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1565 1566
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1567 1568 1569 1570
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1571
        new_var = self._cloneVar()
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1582
        new_var = self._cloneVar()
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1593
                return self._cloneVar(True)
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1612
                return self._cloneVar(True)
1613
            index = int(item)
1614
            if (index > 0 and index >= self.shape[axis]) \
1615 1616 1617 1618 1619 1620 1621
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1622
        return _getitem_impl_(self, item)
1623

Y
Yu Yang 已提交
1624

F
fengjiayi 已提交
1625 1626 1627
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1628

1629 1630
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1631 1632 1633 1634
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1635
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1636 1637 1638 1639
        ret_values.append(op_proto)
    return ret_values


1640 1641 1642 1643 1644 1645 1646
class ComplexVariable(object):
    """
    The Variable defined on the complex number domain. It contains two common 
    real number Variables as its members, :attr:`real` and :attr:`imag` 
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1647
        **The constructor of ComplexVariable should not be invoked directly.**
1648

1649
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexVariable with complex number data.**
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

    Args:
        real (Variable): The Variable holding real-part data.
        imag (Variable): The Variable holding imaginery-part data.
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            a = np.array([1.0+2.0j, 0.2])
            with fluid.dygraph.guard():
                var = fluid.dygraph.to_variable(a, name="new_var")
                print(var.name, var.dtype, var.shape)
                # ({'real': u'new_var.real', 'imag': u'new_var.imag'}, 'complex128', [2L]) 
                print(var.numpy())
                # [1. +2.j 0.2+0.j]
    """

    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
        return "REAL: " + self.real.__str__() + "IMAG: " + self.imag.__str__()

    __repr__ = __str__


F
fengjiayi 已提交
1721
class OpProtoHolder(object):
1722 1723 1724 1725
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1735
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1736 1737 1738 1739 1740 1741
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1742 1743 1744 1745 1746 1747 1748 1749
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1750 1751
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1752 1753
        return self.op_proto_map[type]

1754 1755 1756 1757 1758 1759
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1760 1761 1762 1763
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1764
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1765
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1766 1767
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1768 1769
        }

F
fengjiayi 已提交
1770

X
Xin Pan 已提交
1771
class Operator(object):
1772
    """
1773 1774 1775 1776 1777 1778 1779
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1780
        type(str): The type of operator. Default None.
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1801
        Block.append_op or Block._prepend_op instead.
1802 1803 1804 1805

    Examples:
        .. code-block:: python

1806
            import paddle.fluid as fluid
1807
            cur_program = fluid.Program()
1808 1809 1810 1811 1812
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1813
    """
1814
    OP_WITHOUT_KERNEL_SET = {
1815 1816
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1817 1818
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1819
        'c_sync_comm_stream'
1820
    }
1821

Y
Yu Yang 已提交
1822 1823
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1824
                 desc,
Y
Yu Yang 已提交
1825 1826 1827
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1828
                 attrs=None):
L
lujun 已提交
1829
        if in_dygraph_mode():
1830 1831
            if type is None:
                raise ValueError(
1832
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1833
            self._type = type
M
minqiyang 已提交
1834
            self.attrs = attrs if attrs else {}
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1849
                )] = self.block.program._op_role
1850 1851 1852

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1853 1854
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1855 1856 1857 1858 1859 1860 1861 1862

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1863
                    "`type` to initialized an Operator can not be None.")
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1913
                        for index, arg in enumerate(in_args):
1914 1915 1916 1917
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1918
                            elif isinstance(arg, Variable):
1919
                                in_arg_names.append(cpt.to_text(arg.name))
1920
                            else:
1921 1922 1923 1924
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1925 1926
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1953
                        if not in_dygraph_mode():
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1973
    def _has_kernel(self, op_type):
1974 1975
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1976
    def to_string(self, throw_on_error):
1977
        """
1978 1979
        Get debug string.

1980
        Args:
1981 1982
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1983

1984 1985
        Returns:
            str: The debug string.
1986 1987

        """
1988
        protostr = self.desc.serialize_to_string()
1989
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1990 1991 1992 1993
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1994 1995 1996

    __repr__ = __str__

F
fengjiayi 已提交
1997 1998
    @property
    def type(self):
1999
        return self.desc.type()
F
fengjiayi 已提交
2000 2001

    def input(self, name):
2002
        """
2003
        Get the input arguments according to the input parameter name.
2004

2005 2006
        Args:
            name(str): The input parameter name.
2007

2008 2009 2010
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2011
        """
F
fengjiayi 已提交
2012 2013
        return self.desc.input(name)

W
Wu Yi 已提交
2014
    def _rename_input(self, old_name, new_name):
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2025
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2026

W
Wu Yi 已提交
2027
    def _rename_output(self, old_name, new_name):
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2038
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2039

F
fengjiayi 已提交
2040 2041 2042 2043
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2044 2045 2046 2047 2048 2049 2050 2051
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2052
    def output(self, name):
2053
        """
2054
        Get output arguments by the output parameter name.
2055

2056 2057
        Args:
            name(str): The output parameter name.
2058

2059 2060 2061
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2062
        """
F
fengjiayi 已提交
2063 2064 2065 2066 2067 2068
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2069 2070 2071 2072 2073 2074 2075 2076
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2077
    def has_attr(self, name):
2078
        """
2079 2080
        Whether this Operator has the attribute with name or not.

2081
        Args:
2082
            name(str): the attribute name.
2083

2084 2085
        Returns:
            bool: True if has this attribute.
2086 2087

        """
F
fengjiayi 已提交
2088 2089 2090
        return self.desc.has_attr(name)

    def attr_type(self, name):
2091
        """
2092
        Get the type of attribute by attribute's name.
2093

2094 2095
        Args:
            name(str): the attribute name.
2096

2097 2098
        Returns:
            core.AttrType: the attribute type.
2099
        """
F
fengjiayi 已提交
2100 2101
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2102
    def _set_attr(self, name, val):
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2113 2114
        self._update_desc_attr(name, val)

2115 2116 2117
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2129 2130
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2131 2132
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2133
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2134 2135 2136 2137
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2138
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2139

F
fengjiayi 已提交
2140 2141 2142 2143 2144
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2145
        """
2146 2147
        Get the attribute by name.

2148
        Args:
2149
            name(str): the attribute name.
2150

2151 2152
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2153 2154
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2155
        return self.desc.attr(name)
Y
Yu Yang 已提交
2156

W
Wu Yi 已提交
2157
    def _block_attr_id(self, name):
2158
        """
G
gongweibao 已提交
2159
        Get the block attribute's id by name.
2160

2161 2162
        Args:
            name(str): the attribute name.
2163

2164 2165
        Returns:
            int: the block index.
2166
        """
W
Wu Yi 已提交
2167
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2168

W
Wu Yi 已提交
2169
    def _block_attr(self, name):
G
gongweibao 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2180
        id = self._block_attr_id(name)
G
gongweibao 已提交
2181 2182 2183
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2184
    def _blocks_attr(self, name):
G
gongweibao 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2195
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2196 2197 2198 2199 2200
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2201
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2212
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2213

J
JiayiFeng 已提交
2214
    def all_attrs(self):
F
fengjiayi 已提交
2215
        """
2216 2217 2218
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2219
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2220 2221 2222 2223
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2224 2225
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2226
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2227 2228 2229
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2230
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2231 2232 2233 2234
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2235 2236
        return attr_map

2237 2238 2239 2240 2241 2242 2243 2244 2245
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2246

Y
Yu Yang 已提交
2247
class Block(object):
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2262
        use `Program._create_block()` to create a block.
2263 2264 2265 2266

    Examples:
        .. code-block:: python

2267 2268 2269
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2270 2271 2272 2273 2274 2275 2276 2277 2278
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2279
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2280
        self.desc = program.desc.block(idx)
2281
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2282
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2283
        self.program = program
2284
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2285

2286
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2287 2288
        return self.to_string(True)

F
fengjiayi 已提交
2289 2290
    def to_string(self, throw_on_error, with_details=False):
        """
2291 2292
        Get debug string.

F
fengjiayi 已提交
2293 2294
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2295
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2296
            with_details(bool): more details about variables and parameters
2297 2298
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2299

2300 2301
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2302 2303 2304 2305
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2306
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2307 2308
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2309
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2310
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2311
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2312
            for op in self.ops:
F
fengjiayi 已提交
2313 2314
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2315 2316 2317
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2318 2319
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2320 2321
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2322 2323 2324

    __repr__ = __str__

Y
Yu Yang 已提交
2325 2326
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2327
        return self.desc.parent
Y
Yu Yang 已提交
2328

Y
Yu Yang 已提交
2329 2330 2331 2332
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2333
    def _set_forward_block_idx(self, idx):
2334 2335 2336 2337 2338 2339 2340 2341 2342
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2343
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2344

2345 2346 2347 2348 2349 2350 2351 2352
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2353 2354
    @property
    def idx(self):
Y
Yu Yang 已提交
2355
        return self.desc.id
Y
Yu Yang 已提交
2356

Q
Qiao Longfei 已提交
2357
    def var(self, name):
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2371
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2372 2373 2374
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2375 2376
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2377
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2378
        return v
Q
Qiao Longfei 已提交
2379

X
Xin Pan 已提交
2380
    def _find_var_recursive(self, name):
2381 2382 2383 2384 2385 2386 2387
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2388
            Variable: the Variable with the giving name. Or None if not found.
2389
        """
Y
Yu Yang 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2414
        return None
Y
Yu Yang 已提交
2415

X
Xin Pan 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2435

Q
Qiao Longfei 已提交
2436
    def all_parameters(self):
2437
        return list(self.iter_parameters())
2438

2439
    def iter_parameters(self):
M
minqiyang 已提交
2440
        return (item[1] for item in six.iteritems(self.vars)
2441
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2442

Y
Yu Yang 已提交
2443
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2444 2445 2446
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2447 2448 2449
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2450
        return var
Y
Yu Yang 已提交
2451

Q
Qiao Longfei 已提交
2452 2453 2454
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2455
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2456 2457
        """
        Rename variable in vars and ops' inputs and outputs
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2470
        """
M
minqiyang 已提交
2471 2472
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2473

T
typhoonzero 已提交
2474
        if not self.has_var(name):
2475
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2476 2477
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2478
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2479 2480 2481 2482 2483 2484
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2485
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2486 2487 2488 2489
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2490
        orig_var_type = v.type
M
minqiyang 已提交
2491
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2492
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2493
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2494
        if var_type == "Parameter":
L
Leo Chen 已提交
2495 2496
            if in_dygraph_mode():
                var = ParamBase(
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2507 2508
                var = Parameter(
                    self,
2509 2510 2511 2512 2513 2514 2515 2516 2517
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2518
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2519 2520
            var = Variable(
                self,
T
typhoonzero 已提交
2521
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2522 2523 2524 2525
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2526
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2527 2528 2529
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2530
        self._sync_with_cpp()
2531
        return var
T
typhoonzero 已提交
2532

W
Wu Yi 已提交
2533 2534
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2535
        self.desc._remove_var(cpt.to_bytes(name))
2536 2537
        del self.vars[name]

Y
Yu Yang 已提交
2538 2539
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2540
        param = None
L
Leo Chen 已提交
2541
        if in_dygraph_mode():
2542
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2543 2544
        else:
            param = Parameter(global_block, *args, **kwargs)
2545
        if 'initializer' in kwargs:
2546 2547 2548 2549 2550

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2551 2552 2553 2554 2555
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2567
                # TODO already inited, do nothing, should log a warning
2568 2569 2570
                pass
            else:
                initializer(param, self)
2571
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2572
        return param
Y
Yu Yang 已提交
2573

Y
Yu Yang 已提交
2574
    def append_op(self, *args, **kwargs):
2575 2576 2577 2578 2579 2580
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2581
        if in_dygraph_mode():
2582
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2583
            type = kwargs.get("type", None)
2584 2585 2586
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2587
                type=type,
M
minqiyang 已提交
2588 2589
                inputs=None,
                outputs=None,
2590
                attrs=attrs)
2591

M
minqiyang 已提交
2592 2593 2594
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2595
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2596 2597

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2598
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2599 2600
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2601
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2602
        else:
2603 2604 2605 2606 2607 2608 2609 2610 2611
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2612
            self.ops.append(op)
M
minqiyang 已提交
2613

2614 2615
        return op

W
Wu Yi 已提交
2616
    def _insert_op(self, index, *args, **kwargs):
2617 2618 2619 2620 2621 2622 2623 2624 2625
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2626 2627
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2628 2629 2630 2631
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2632
    def _remove_op(self, index):
2633 2634 2635 2636 2637 2638 2639 2640 2641
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2642 2643
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2644 2645
        del self.ops[index]

W
Wu Yi 已提交
2646
    def _slice_ops(self, start, end):
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2657
        return self.ops[start:end]
Y
Yancey1989 已提交
2658

W
Wu Yi 已提交
2659
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2660
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2661 2662
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2663
            op = Operator(
J
Jiabin Yang 已提交
2664
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2665

J
Jiabin Yang 已提交
2666
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2667
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2668 2669
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2670
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2671
        else:
2672 2673 2674 2675 2676 2677 2678 2679
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2680
            self.ops.insert(0, op)
2681

Y
Yu Yang 已提交
2682 2683
        return op

W
Wu Yi 已提交
2684
    def _sync_with_cpp(self):
2685
        """
2686 2687
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2688
        """
Q
Qiao Longfei 已提交
2689 2690 2691 2692 2693
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2694
        # sync variables removed from c++ end
2695
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2696
            if not self.desc.find_var(cpt.to_bytes(var)):
2697 2698
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2699
        # sync operators from cpp
2700 2701 2702 2703
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2720 2721 2722 2723 2724

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2725
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2726 2727 2728 2729 2730 2731 2732

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2746 2747 2748 2749
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2750
    def _copy_param_info_from(self, other):
2751
        """
2752 2753
        Copy the information of parameters from the other block.

2754
        Args:
2755 2756 2757 2758 2759
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2760 2761 2762 2763 2764

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2765 2766
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2767
        for p in other.iter_parameters():
2768 2769 2770
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2771 2772
                # if the Parameter is pruned, v may be None
                continue
2773
            assert isinstance(v, Variable)
2774
            new_p = None
L
Leo Chen 已提交
2775 2776
            if in_dygraph_mode():
                new_p = ParamBase(
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2788 2789
                new_p = Parameter(
                    block=self,
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2800 2801
            self.vars[new_p.name] = new_p

2802
    def _clone_variable(self, var, force_persistable=True):
2803 2804
        """
        Clone a variable into current block.
2805

2806 2807
        Args:
            var: the variable to be cloned.
2808 2809 2810
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2811 2812

        Returns:
2813
            Variable: the new  variable cloned from 'var' in current block.
2814 2815
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2816 2817 2818 2819 2820
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2821 2822
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2823
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2824 2825 2826 2827 2828 2829
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2830
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2831 2832
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2833 2834 2835 2836 2837 2838 2839
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2840
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2841 2842
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2843
        return ret_var
2844

Y
Yu Yang 已提交
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2941
    def remove_input_by_id(self, node_id):
2942 2943 2944 2945 2946 2947
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2948
        self.node.remove_input(node_id)
2949

2950
    def remove_input(self, node):
2951 2952 2953 2954
        """
        Remove a node from inputs.

        Args:
2955
            node(IrNode): the node being removed.
2956
        """
2957
        self.node.remove_input(node.node)
2958

2959
    def append_input(self, node):
2960 2961 2962 2963
        """
        Append a node in inputs.

        Args:
2964
            node(IrNode): the node being appended.
2965
        """
2966
        self.node.append_input(node.node)
2967 2968 2969 2970 2971 2972 2973 2974

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2975
    def remove_output_by_id(self, node_id):
2976 2977 2978 2979 2980 2981
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2982
        self.node.remove_output(node_id)
2983

2984
    def remove_output(self, node):
2985 2986 2987 2988
        """
        Remove a node from outputs.

        Args:
2989
            node(IrNode): the node being removed.
2990
        """
2991
        self.node.remove_output(node.node)
2992

2993
    def append_output(self, node):
2994 2995 2996 2997
        """
        Append a node in outputs.

        Args:
2998
            node(IrNode): the node being appended.
2999
        """
3000
        self.node.append_output(node.node)
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3048
            "The node variable description can not be None."
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3059
            "The node variable description can not be None."
3060 3061
        return self.node.var().persistable()

3062 3063 3064 3065 3066 3067 3068 3069
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3070
            "The node variable description can not be None."
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3081
            "The node variable description can not be None."
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3092
            "The node variable description can not be None."
3093 3094
        return self.node.var().shape()

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3142
            "The node operator description can not be None."
3143 3144
        self.node.op()._rename_input(old_input_name, new_input_name)

3145 3146 3147 3148 3149 3150 3151 3152 3153
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3154
            "The node operator description can not be None."
3155 3156 3157 3158
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3170
            "The node operator description can not be None."
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3184
            "The node operator description can not be None."
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3195
            "The node operator description can not be None."
3196 3197
        return self.node.op().set_type(new_type)

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3213
            "The node operator description can not be None."
3214 3215 3216 3217
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3218
                all(isinstance(v, Block) for v in val):
3219 3220
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3221
                isinstance(val, core.ProgramDesc):
3222 3223 3224 3225
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3226 3227 3228 3229 3230 3231 3232 3233
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3234
            "The node operator description can not be None."
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3245
            "The node operator description can not be None."
3246 3247
        return self.node.op().output_arg_names()

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3269 3270
class IrGraph(object):
    """
3271
    Python IrGraph. Beneath it is a core.Graph, which is used for
3272
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3273 3274
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3275 3276 3277 3278
    """

    def __init__(self, graph, for_test=False):
        """
3279 3280
        Construct an IrGraph using core.Graph.

3281 3282 3283 3284 3285 3286 3287 3288 3289
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3290 3291 3292 3293
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3294 3295 3296
        Warns:
            The method only clones the graph structure, not its attributes.

3297 3298 3299
        Returns:
            IrGraph: A new and duplicated graph.
        """
3300
        g = self.graph.clone()
3301 3302
        return IrGraph(g, self._for_test)

3303
    def is_test(self):
3304 3305 3306
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3307 3308
        return self._for_test

W
WangZhen 已提交
3309
    def all_nodes(self):
3310 3311 3312
        """
        Return all nodes included in the graph as a set.
        """
3313
        return {IrNode(node) for node in self.graph.nodes()}
3314

3315
    def all_var_nodes(self):
3316 3317 3318
        """
        Return all variable nodes included in the graph as a set.
        """
3319
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3320

3321
    def all_persistable_nodes(self):
3322 3323 3324
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3325 3326 3327 3328 3329
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3330
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3331

3332
    def all_op_nodes(self):
3333 3334 3335
        """
        Return all operator nodes included in the graph as a set.
        """
3336
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3337

3338
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3350
            IrVarNode: the created persistable variable node.
3351
        """
3352 3353 3354 3355 3356
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3357
        return IrVarNode(self.graph.create_var_node(var_desc))
3358 3359

    def create_var_node(self, name, var_type, shape, var_dtype):
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3371
            IrVarNode: the created variable node.
3372 3373
        """

3374 3375 3376 3377
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3378
        return IrVarNode(self.graph.create_var_node(var_desc))
3379 3380

    def create_var_node_from_desc(self, var_desc):
3381 3382 3383 3384 3385 3386 3387 3388
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3389
            IrVarNode: the created variable node.
3390
        """
3391
        return IrVarNode(self.graph.create_var_node(var_desc))
3392 3393

    def create_op_node(self, op_type, attrs, inputs, outputs):
3394 3395 3396 3397 3398 3399 3400
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3401
            outputs(dict): the outputs of the operator node.
3402 3403

        Returns:
3404
            IrOpNode: the created operator node.
3405
        """
3406 3407
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3408
        for attr, value in six.iteritems(attrs):
3409
            self._update_desc_attr(op_desc, attr, value)
3410
        for input_name, var_nodes in six.iteritems(inputs):
3411 3412 3413 3414
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3415
        for output_name, var_nodes in six.iteritems(outputs):
3416 3417 3418 3419
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3420
        return IrOpNode(self.graph.create_op_node(op_desc))
3421 3422

    def create_op_node_from_desc(self, op_desc):
3423 3424 3425 3426 3427 3428 3429
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3430
            IrOpNode: the created operator node.
3431
        """
3432
        return IrOpNode(self.graph.create_op_node(op_desc))
3433 3434

    def update_input_link(self, old_input_node, new_input_node, op_node):
3435 3436 3437 3438
        """
        Update the input's link of a operator node.

        Args:
3439 3440 3441
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3442
        """
3443
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3444 3445
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3446 3447 3448 3449
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3450
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3451

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3462 3463
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3464 3465 3466 3467 3468 3469
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3470
    def link_to(self, node_in, node_out):
3471 3472 3473 3474
        """
        Connect two nodes.

        Args:
3475 3476
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3477
        """
3478
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3479
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3480 3481
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3482 3483

    def safe_remove_nodes(self, remove_nodes):
3484 3485 3486 3487 3488 3489 3490
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3491
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3492 3493 3494 3495
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3496 3497
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3498

Z
Zhen Wang 已提交
3499 3500 3501 3502 3503 3504 3505 3506
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3507
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3508 3509 3510 3511
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3512
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3513 3514 3515
                        ]
                    else:
                        var_nodes[each_var_name].append(
3516 3517
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3518 3519
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3520
    def has_circle(self):
3521 3522 3523 3524 3525 3526
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3527 3528 3529
        return core.has_circle(self.graph)

    def graph_num(self):
3530 3531 3532 3533 3534 3535
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3536 3537 3538
        return core.graph_num(self.graph)

    def topology_sort(self):
3539 3540 3541
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3542
        Notes: the `graph` can not contain a circle.
3543 3544

        Returns:
Z
Zhen Wang 已提交
3545
            list(IrNode): nodes in topology order.
3546
        """
3547
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3548
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3549 3550

    def build_adjacency_list(self):
3551 3552 3553 3554
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3555
            dict{IrNode: set(IrNode)}: the adjacency list.
3556
        """
3557 3558 3559 3560 3561
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3562

3563 3564 3565 3566 3567 3568 3569 3570
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3571
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3572 3573 3574 3575 3576
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3577 3578 3579
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3580
                                          + ' -o ' + pdf_save_path, shell=True)
3581 3582 3583 3584 3585
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3586
        remove_ctr_vars = set()
3587
        if remove_ctr_var:
3588
            for node in self.all_var_nodes():
3589 3590 3591
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3592 3593
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3594 3595
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3596 3597 3598 3599 3600 3601
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3602 3603 3604 3605
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3606 3607
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3608 3609 3610 3611 3612 3613 3614
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3615 3616 3617
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3618
        WARN: When the graph includes backward operator nodes, the
3619 3620 3621 3622 3623 3624
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3625
        convert_pass = core.get_pass('graph_to_program_pass')
3626 3627
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3628 3629 3630 3631
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3659
class Program(object):
D
dzhwinter 已提交
3660
    """
3661 3662
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3663
    it will contain nested block.
3664

J
Jiabin Yang 已提交
3665 3666 3667
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3668

J
Jiabin Yang 已提交
3669
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3670
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3671 3672 3673 3674 3675 3676 3677
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3678 3679 3680 3681
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3682 3683

    Returns:
J
Jiabin Yang 已提交
3684
        Program: An empty Program.
D
dzhwinter 已提交
3685 3686

    Examples:
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3700 3701 3702

    """

3703 3704
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3705 3706
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3707 3708
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3709
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3710
        self.__op_role_var = []
T
tangwei12 已提交
3711

3712 3713
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3714
        self._is_distributed = False
3715
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3716
        self._is_chief = False
3717 3718 3719
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3720
        self._endpoints = []
3721 3722 3723
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3724
        self._trainers_endpoints = []
3725
        # the distributed lookup table names
T
tangwei12 已提交
3726
        self._distributed_lookup_table = None
3727 3728 3729

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3730 3731
        self._use_lamb = False

3732 3733 3734
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3735

3736 3737 3738
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3739
        self._program_config = None
3740

H
hutuxian 已提交
3741 3742 3743
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3744 3745 3746
        # appending gradients times
        self._appending_grad_times = 0

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
3774
    @property
3775
    def _op_role(self):
Y
yuyang18 已提交
3776 3777 3778 3779 3780 3781 3782 3783
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3784
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3785 3786 3787 3788
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3789 3790
        return self._current_role

3791 3792
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3793 3794 3795
        self._current_role = role

    @property
3796
    def _op_role_var(self):
Y
yuyang18 已提交
3797
        """
3798
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3799

3800
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3801 3802 3803

        Notes: This is a very low-level API. Users should not use it directly.
        """
3804
        return self.__op_role_var
Y
yuyang18 已提交
3805

3806 3807 3808 3809 3810 3811 3812 3813 3814
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3815
    @signature_safe_contextmanager
W
Wu Yi 已提交
3816
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3817 3818 3819 3820 3821 3822 3823
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3824
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3825 3826 3827

        Examples:

3828
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3829
            >>> p, g = backward(...)
W
Wu Yi 已提交
3830
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3831 3832
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3833
        tmp_role = self._current_role
3834
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3835

Y
yuyang18 已提交
3836 3837
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3838
        self.__op_role_var = [
3839 3840 3841
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3842
        yield
3843
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3844
        self._current_role = tmp_role
Y
Yu Yang 已提交
3845

S
rename  
sneaxiy 已提交
3846
    @signature_safe_contextmanager
X
Xin Pan 已提交
3847
    def _lr_schedule_guard(self, is_with_opt=False):
3848 3849 3850 3851 3852 3853 3854
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3855 3856 3857 3858
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3859 3860 3861

        Examples:

3862
            >>> import paddle.fluid as fluid
3863 3864 3865 3866
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3867 3868

        tmp_role = self._current_role
3869
        tmp_var = self.__op_role_var
3870

3871 3872
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3873 3874
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3875
        # TODO(typhoonzero): how to set target learning rate var
3876
        self.__op_role_var = []
3877
        yield
3878
        self.__op_role_var = tmp_var
3879
        self._current_role = tmp_role
3880

3881
    def __str__(self):
Y
yuyang18 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3891 3892
        return self.to_string(True)

F
fengjiayi 已提交
3893 3894 3895
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3896

J
Jiabin Yang 已提交
3897 3898 3899
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3900

J
Jiabin Yang 已提交
3901
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3902

H
haowang101779990 已提交
3903
        Returns:
J
Jiabin Yang 已提交
3904
            str: The debug string describe current Program.
Y
yuyang18 已提交
3905 3906

        Raises:
J
Jiabin Yang 已提交
3907
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3908

3909 3910 3911 3912 3913 3914
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
3915 3916
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
3917
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
3918
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
3919
                print("program string without detail: {}".format(prog_string))
3920
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
3921
        """
3922 3923 3924 3925 3926 3927 3928 3929 3930
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
3931 3932 3933 3934 3935 3936
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3937 3938
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3939 3940
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3941

W
Wu Yi 已提交
3942
    def _get_desc(self):
Y
yuyang18 已提交
3943 3944 3945 3946 3947 3948 3949
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3950 3951
        return self.desc

X
version  
Xin Pan 已提交
3952 3953 3954
    def _version(self):
        return self.desc._version()

3955
    def clone(self, for_test=False):
Y
yuyang18 已提交
3956
        """
3957
        **Notes**:
J
Jiabin Yang 已提交
3958 3959 3960 3961
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3962
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3963

3964
        Create a new Program with forward content of original one when ``for_test=True``.
3965
        Create a new Program as same as the original one when ``for_test=False``.
3966

J
Jiabin Yang 已提交
3967
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3968 3969 3970
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3971

3972 3973
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
3974 3975
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3976
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3977

J
Jiabin Yang 已提交
3978
        For Example:
3979
          ::
L
Luo Tao 已提交
3980

3981 3982 3983 3984 3985 3986 3987 3988
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
3989

J
Jiabin Yang 已提交
3990
        Args:
3991

3992 3993
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
3994

J
Jiabin Yang 已提交
3995
        Returns:
3996
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
3997

Y
yuyang18 已提交
3998 3999 4000

        Examples:

J
Jiabin Yang 已提交
4001
        **Notes: The Program's order maybe different after** :code:`clone` **and
4002
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4003
        example we give you an simple method** :code:`print_prog(program)` **to
4004
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4005
        after** :code:`clone`:
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4042 4043 4044

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4045 4046 4047 4048 4049 4050 4051 4052 4053
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4054
                            test_program = train_program.clone(for_test=True)
4055
                    print_prog(test_program)
J
Jiabin Yang 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4087 4088
                    
                    def network():
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4103 4104 4105
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4106
                    # the test startup program is not used.
4107
                    with fluid.program_guard(test_program_2, startup_program_2):
4108
                        with fluid.unique_name.guard():
4109 4110
                            avg_loss = network()
                    print_prog(test_program_2)
4111 4112

        The two code snippets above will generate and print same programs.
4113
        """
4114 4115 4116 4117 4118

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4119
        pruned_origin_block_id_map = None
4120
        if for_test:
4121 4122 4123 4124 4125 4126 4127 4128 4129
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4130
        else:
4131
            p = Program()
G
gongweibao 已提交
4132 4133
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4134
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4135 4136 4137
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4138 4139

            p._current_role = self._current_role
4140
            p.__op_role_var = self.__op_role_var
4141
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4142

4143 4144
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4145
            p._sync_with_cpp()
4146

W
Wu Yi 已提交
4147
        p._copy_param_info_from(self)
4148
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4149
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4150
        return p
4151

4152
    def _prune(self, targets):
Y
yuyang18 已提交
4153 4154 4155 4156 4157 4158 4159 4160
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4161
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4162 4163 4164 4165
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4166
        """
4167
        return self._prune_with_input([], targets)
4168 4169

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4170
        """
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4181
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4182 4183 4184 4185 4186 4187
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4188 4189 4190 4191
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4192 4193
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4194 4195
        if not isinstance(targets, list):
            targets = [targets]
4196 4197 4198

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4199 4200 4201
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4202

4203 4204 4205 4206
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4207 4208 4209
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4210
                else:
4211 4212 4213
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4214 4215 4216 4217 4218 4219 4220 4221

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4238 4239 4240 4241 4242 4243 4244 4245
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4246

4247
        res = Program()
4248 4249 4250
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4251 4252 4253
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4254
        res._sync_with_cpp()
4255 4256 4257 4258 4259

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4260 4261
        return res

X
Xin Pan 已提交
4262
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4263
        """
F
fengjiayi 已提交
4264 4265 4266 4267 4268
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4269
        3. change the :code:`is_test`
Y
yuyang18 已提交
4270 4271 4272
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4273
        Args:
X
Xin Pan 已提交
4274 4275
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4276

Y
yuyang18 已提交
4277 4278 4279 4280 4281 4282
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4283
        res = Program()
4284
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4285 4286 4287 4288

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4289
        if prune_read_op:
4290 4291 4292 4293 4294 4295 4296 4297 4298
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4299
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4300 4301

        # change all `is_test` attributes to True
M
minqiyang 已提交
4302
        for i in six.moves.range(res.desc.num_blocks()):
4303
            block = res.desc.block(i)
M
minqiyang 已提交
4304
            for j in six.moves.range(block.op_size()):
4305 4306
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4307
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4308 4309 4310
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4311
        res._sync_with_cpp()
4312 4313
        return res

4314 4315
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4316
        """
J
Jiabin Yang 已提交
4317 4318 4319 4320
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4321

4322 4323
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4324

J
Jiabin Yang 已提交
4325
        Args:
Y
yuyang18 已提交
4326

J
Jiabin Yang 已提交
4327
            binary_str_type (str): the binary prootbuf string.
4328

J
Jiabin Yang 已提交
4329 4330
        Returns:
            Program: A deserialized Program.
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4353
        """
4354 4355
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4356
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4357
        p._sync_with_cpp()
4358
        return p
Y
Yu Yang 已提交
4359

4360
    @staticmethod
4361
    def _construct_from_desc(desc):
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4377 4378
    @property
    def random_seed(self):
Y
yuyang18 已提交
4379
        """
J
Jiabin Yang 已提交
4380
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4381 4382
        the random seed from random device.

J
Jiabin Yang 已提交
4383 4384 4385 4386
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4387

4388 4389 4390 4391 4392 4393 4394 4395

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4396
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4397 4398 4399
                print(random_seed)
                ## 0
                ## the default random seed is 0
4400 4401

                # Here we need to set random seed before we use fluid.layers.dropout
4402
                prog.random_seed = 1
4403 4404
                z_var = fluid.layers.dropout(x_var, 0.7)

4405
                print(prog.random_seed)
4406 4407
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4408
        """
D
dzhwinter 已提交
4409 4410
        return self._seed

Q
qiaolongfei 已提交
4411 4412
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4413
        """
4414 4415
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4416 4417 4418 4419
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4420

4421 4422 4423 4424 4425 4426 4427 4428 4429

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4430 4431


Y
yuyang18 已提交
4432
        """
Q
qiaolongfei 已提交
4433 4434
        return self.desc.num_blocks()

D
dzhwinter 已提交
4435 4436 4437
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4438 4439 4440
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4441 4442
        self._seed = seed

Y
Yu Yang 已提交
4443
    def __repr__(self):
4444
        return self.__str__()
4445

Y
Yu Yang 已提交
4446
    def global_block(self):
Y
yuyang18 已提交
4447
        """
J
Jiabin Yang 已提交
4448 4449
        **Notes**:
            **This API has no effect in Dygraph mode**
4450 4451 4452

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4453 4454
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4465

Y
yuyang18 已提交
4466
        """
Y
Yu Yang 已提交
4467 4468
        return self.blocks[0]

Q
Qiao Longfei 已提交
4469
    def block(self, index):
Y
yuyang18 已提交
4470
        """
J
Jiabin Yang 已提交
4471 4472
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4473

4474 4475
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4476 4477
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4478

J
Jiabin Yang 已提交
4479 4480
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4481 4482 4483 4484 4485 4486 4487 4488 4489

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4490
        """
Q
Qiao Longfei 已提交
4491 4492
        return self.blocks[index]

Y
Yu Yang 已提交
4493
    def current_block(self):
Y
yuyang18 已提交
4494
        """
J
Jiabin Yang 已提交
4495 4496
        **Notes**:
            **This API has no effect in Dygraph mode**
4497

J
Jiabin Yang 已提交
4498 4499
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4500

J
Jiabin Yang 已提交
4501 4502
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4503

4504 4505 4506 4507 4508 4509 4510 4511
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4512
        """
Y
Yu Yang 已提交
4513 4514
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4515
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4516 4517 4518 4519 4520
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4521

Y
yuyang18 已提交
4522 4523 4524 4525 4526
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4527
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4528 4529 4530
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4531 4532 4533 4534
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4535
    def _rollback(self):
Y
yuyang18 已提交
4536 4537 4538 4539 4540
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4541 4542
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4543
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4554 4555 4556
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4557
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4558

W
Wu Yi 已提交
4559
    def _copy_param_info_from(self, other):
4560
        """
4561
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4562

Y
yuyang18 已提交
4563 4564 4565
        Notes: This is a very low level API. Users should not invoke it
        directly.

4566 4567 4568 4569 4570 4571 4572
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4573 4574 4575
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4576

W
Wu Yi 已提交
4577
        self.global_block()._copy_param_info_from(other.global_block())
4578

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4590 4591 4592
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4593 4594
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4595
        self._parameters_on_pservers = other._parameters_on_pservers
4596
        self._endpoints = other._endpoints
4597
        self._ps_endpoint = other._ps_endpoint
4598 4599
        self._distributed_lookup_table = other._distributed_lookup_table

4600
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4601 4602
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4603

Y
yuyang18 已提交
4604 4605 4606
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4607 4608
        Args:
            other(Program): Other program
4609 4610 4611 4612
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4613 4614 4615 4616 4617

        Returns:
            None
        """
        if not isinstance(other, Program):
4618 4619 4620
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4621

4622 4623 4624 4625 4626
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4627 4628 4629

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4630 4631
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4632
            for var in list(block.vars.values()):
4633 4634 4635 4636 4637 4638 4639
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4640

4641
    def list_vars(self):
Y
yuyang18 已提交
4642
        """
J
Jiabin Yang 已提交
4643
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4644

J
Jiabin Yang 已提交
4645 4646
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4658
        """
4659
        for each_block in self.blocks:
4660
            for each_var in list(each_block.vars.values()):
4661 4662
                yield each_var

4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4721

4722
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4723
class Parameter(Variable):
4724
    """
4725
    Parameter is derived from Variable. A parameter is a persistable
4726
    Variable, and will be updated by optimizers after each iteration.
4727
    The training of a neural network is essentially the updating of
4728 4729
    its parameters.

4730
    Relative to a general Variable, a Parameter has several its own
4731 4732
    member variables:

4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4743 4744
    """

4745 4746 4747 4748 4749 4750
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4751 4752 4753 4754 4755
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4756
        if len(shape) == 0:
4757 4758
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4759 4760 4761

        for each in shape:
            if each < 0:
4762 4763 4764
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4765 4766

        Variable.__init__(
4767 4768 4769 4770 4771 4772 4773
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4774 4775 4776 4777
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4778 4779
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
4780
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4781

4782 4783
        self.is_distributed = False

F
fengjiayi 已提交
4784 4785 4786
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4787 4788 4789
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4790

F
update  
fengjiayi 已提交
4791 4792 4793 4794 4795 4796 4797 4798
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4799 4800 4801 4802 4803 4804 4805 4806 4807
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4808 4809 4810 4811 4812 4813
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
4814
                               "do_model_average")
F
update  
fengjiayi 已提交
4815
            for attr_name in additional_attr:
4816 4817
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4818 4819
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4820 4821 4822 4823
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4824

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

4885
        # self.block = default_main_program().global_block()
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
4916
            return 'Parameter: %s\n%s' % (self.name, str(tensor))
4917
        else:
4918
            return 'Parameter: %s, not initialized' % (self.name)
4919 4920 4921 4922

    __repr__ = __str__


Y
Yu Yang 已提交
4923
# program is a global instance.
Y
Yu Yang 已提交
4924 4925
_main_program_ = Program()
_startup_program_ = Program()
4926

4927

4928
def default_startup_program():
Y
Yu Yang 已提交
4929
    """
Y
yuyang18 已提交
4930 4931
    Get default/global startup program.

J
Jiabin Yang 已提交
4932 4933 4934
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4935 4936 4937
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4938
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4939

J
Jiabin Yang 已提交
4940
    Returns: current default startup :ref:`api_fluid_Program`
4941

J
Jiabin Yang 已提交
4942
    Returns type: :ref:`api_fluid_Program`
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4958
    """
Y
Yu Yang 已提交
4959
    return _startup_program_
4960

4961

4962
def default_main_program():
Y
Yu Yang 已提交
4963
    """
4964 4965 4966 4967 4968
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4969

4970 4971
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4972
    :code:`default_main_program` when the program is not specified.
4973

4974 4975
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4976
    Returns:
4977
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4978 4979 4980 4981 4982

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4983

4984
            # Sample Network:
4985 4986
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5006
            #print the number of blocks in the program, 1 in this case
5007
            print(fluid.default_main_program().num_blocks)
5008 5009

            #print the description of variable 'image'
5010
            print(fluid.default_main_program().blocks[0].var('image'))
5011

Y
Yu Yang 已提交
5012
    """
Y
Yu Yang 已提交
5013
    return _main_program_
Y
Yu Yang 已提交
5014 5015 5016 5017 5018


def switch_main_program(program):
    """
    Switch the main program to a new program.
5019

Y
Yu Yang 已提交
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5034
    Switch the startup program to a new program
Y
Yu Yang 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5047
@signature_safe_contextmanager
Y
Yu Yang 已提交
5048 5049
def program_guard(main_program, startup_program=None):
    """
5050 5051
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5052
    variables to the new main programs.
5053

G
guofei 已提交
5054 5055 5056 5057 5058 5059 5060
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5061
    Examples:
5062 5063 5064
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5065

5066 5067 5068
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5069
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5070
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5071 5072 5073

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5074

Y
Yu Yang 已提交
5075
    Examples:
5076
       .. code-block:: python
Y
yuyang18 已提交
5077

5078 5079 5080 5081 5082
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5083 5084
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5085
    """
5086 5087
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5088 5089
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5090 5091
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5092 5093 5094 5095 5096
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
5097 5098


W
Wu Yi 已提交
5099
def _get_var(name, program=None):
X
xuwei06 已提交
5100
    """
Y
yuyang18 已提交
5101
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5102

X
xuwei06 已提交
5103 5104 5105
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5106
        If None, default_global_program() will be used.
X
xuwei06 已提交
5107 5108 5109 5110 5111 5112 5113

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5114
    assert isinstance(program, Program)
X
xuwei06 已提交
5115 5116

    return program.global_block().var(name)
5117 5118


S
rename  
sneaxiy 已提交
5119
@signature_safe_contextmanager
L
lujun 已提交
5120 5121 5122 5123
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5124
    core._switch_tracer(tracer)
M
minqiyang 已提交
5125

5126
    yield
P
Paddle CI 已提交
5127

5128
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5129
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5130 5131


S
rename  
sneaxiy 已提交
5132
@signature_safe_contextmanager
L
lujun 已提交
5133 5134 5135 5136
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5137

5138
    yield
M
minqiyang 已提交
5139

L
lujun 已提交
5140
    _dygraph_current_expected_place_ = tmp_place
5141 5142 5143 5144 5145 5146 5147


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5148
    Please note, the type of custom operators can't have the same type
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
    yield
    switch_device(pre_device)
G
guofei 已提交
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value