thread_icnet_test.cc 4.2 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#define GOOGLE_GLOG_DLL_DECL

#include <gflags/gflags.h>
#include <glog/logging.h>
//#include <gtest/gtest.h>
#include <chrono>
#include <fstream>
#include <iostream>
#include <thread>  // NOLINT
D
dzhwinter 已提交
24
#include "paddle/fluid/inference/api/paddle_inference_api.h"
D
dzhwinter 已提交
25 26 27 28 29 30 31

#define ASSERT_TRUE(x) x
#define ASSERT_EQ(x, y) assert(x == y)


// DEFINE_string(dirname, "./LB_icnet_model",
//               "Directory of the inference model.");
D
dzhwinter 已提交
32
namespace paddle {
D
dzhwinter 已提交
33 34
NativeConfig GetConfig() {
  NativeConfig config;
D
dzhwinter 已提交
35 36 37
  config.prog_file = "./hs_lb_without_bn_cuda/__model__";
  config.param_file = "./hs_lb_without_bn_cuda/__params__";
  config.fraction_of_gpu_memory = 0.5;
D
dzhwinter 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51
  config.use_gpu = true;
  config.device = 0;
  return config;
}

using Time = decltype(std::chrono::high_resolution_clock::now());
Time time() { return std::chrono::high_resolution_clock::now(); };
double time_diff(Time t1, Time t2) {
  typedef std::chrono::microseconds ms;
  auto diff = t2 - t1;
  ms counter = std::chrono::duration_cast<ms>(diff);
  return counter.count() / 1000.0;
}

D
dzhwinter 已提交
52
void test_naive(int batch_size, std::string model_path) {
D
dzhwinter 已提交
53 54 55 56
  NativeConfig config = GetConfig();
  int height = 449;
  int width = 581;
  std::vector<float> data;
D
dzhwinter 已提交
57 58
  for(int i=0; i < 3 * height * width; ++i) {
    data.push_back(0.0);
D
dzhwinter 已提交
59 60
  }

D
dzhwinter 已提交
61 62 63 64 65 66 67 68
  // read data
  // std::ifstream infile("new_file.list");
  // std::string temp_s;
  // std::vector<std::string> all_files;
  // while (!infile.eof()) {
  //   infile >> temp_s;
  //   all_files.push_back(temp_s);
  // }
D
dzhwinter 已提交
69

D
dzhwinter 已提交
70 71 72 73 74 75 76
  // // size_t file_num = all_files.size();
  // infile.close();
  // // =============read file list =============
  // for (size_t f_k = 0; f_k < 1; f_k++) {
  //   std::ifstream in_img(all_files[f_k]);
  //   std::cout << all_files[f_k] << std::endl;
  //   float temp_v;
D
dzhwinter 已提交
77

D
dzhwinter 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  //   float sum_n = 0.0;
  //   std::vector<float> data;
  //   while (!in_img.eof()) {
  //     in_img >> temp_v;
  //     data.push_back(float(temp_v));

  //     sum_n += temp_v;
  //   }
  //   in_img.close();
  //   std::cout << "sum: " << sum_n << std::endl;

    PaddleTensor tensor;
    tensor.shape = std::vector<int>({batch_size, 3, height, width});
    tensor.data.Resize(sizeof(float) * batch_size * 3 * height * width);
    std::copy(data.begin(), data.end(),
              static_cast<float*>(tensor.data.data()));
    tensor.dtype = PaddleDType::FLOAT32;
    std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);

    constexpr int num_jobs = 2;  // each job run 1 batch
    std::vector<std::thread> threads;
D
dzhwinter 已提交
99

D
dzhwinter 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    for (int tid = 0; tid < num_jobs; ++tid) {
      threads.emplace_back([&, tid]() {
      PaddleTensor tensor_out;
      std::vector<PaddleTensor> outputs(1, tensor_out);
        auto predictor = CreatePaddlePredictor<NativeConfig>(config);
        for (size_t i = 0; i < 1000; i++) {
          ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
          VLOG(0) << "tid : " << tid << " run: " << i << "finished";
          //std::cout <<"tid : " << tid << " run: " << i << "finished" << std::endl;
          ASSERT_EQ(outputs.size(), 1UL);
          // int64_t* data_o = static_cast<int64_t*>(outputs[0].data.data());
          // int64_t sum_out = 0;
          // for (size_t j = 0; j < outputs[0].data.length() / sizeof(int64_t);
          //      ++j) {
          //   sum_out += data_o[j];
          // }
          // std::cout << "tid : " << tid << "pass : " << i << " " << sum_out
          //           << std::endl;
        }
      });
    }
    for (int i = 0; i < num_jobs; ++i) {
      threads[i].join();
    }
  }
// }
} // namespace paddle

  int main(int argc, char** argv) { 
    paddle::test_naive(1 << 0, ""); 
    return 0;
}