data_norm_op.cc 32.8 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/data_norm_op.h"
16

P
phlrain 已提交
17
#include <memory>
H
heqiaozhi 已提交
18
#include <string>
19

H
heqiaozhi 已提交
20
#include "paddle/fluid/framework/data_layout.h"
H
heqiaozhi 已提交
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24
#include "paddle/fluid/framework/op_version_registry.h"
H
heqiaozhi 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

class DataNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
50
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DataNorm");
51 52
    OP_INOUT_CHECK(
        ctx->HasInput("BatchSize"), "Input", "BatchSize", "DataNorm");
53
    OP_INOUT_CHECK(ctx->HasInput("BatchSum"), "Input", "BatchSum", "DataNorm");
54 55
    OP_INOUT_CHECK(
        ctx->HasInput("BatchSquareSum"), "Input", "BatchSquareSum", "DataNorm");
56 57 58
    OP_INOUT_CHECK(ctx->HasOutput("Means"), "Output", "Means", "DataNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Scales"), "Output", "Scales", "DataNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "DataNorm");
59 60 61 62
    bool enable_scale_and_shift =
        ctx->Attrs().Get<bool>("enable_scale_and_shift");
    if (enable_scale_and_shift) {
      PADDLE_ENFORCE_EQ(
63 64
          ctx->HasInput("scale_w"),
          true,
65 66
          platform::errors::InvalidArgument(
              "Input(scale_w) of DataNormOp should not be null."));
67 68
      PADDLE_ENFORCE_EQ(ctx->HasInput("bias"),
                        true,
69 70 71
                        platform::errors::InvalidArgument(
                            "Input(bias) of DataNormOp should not be null."));
    }
H
heqiaozhi 已提交
72 73 74 75 76

    const auto x_dims = ctx->GetInputDim("X");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));

77 78
    PADDLE_ENFORCE_EQ(x_dims.size() >= 2 && x_dims.size() <= 5,
                      true,
79 80
                      platform::errors::InvalidArgument(
                          "Input X must have 2 to 5 dimensions."));
H
heqiaozhi 已提交
81 82 83 84 85

    const int64_t C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

86 87
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize").size(),
                      1UL,
88 89
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSize shouold be 1"));
90 91
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum").size(),
                      1UL,
92 93
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSum shouold be 1"));
94 95
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum").size(),
                      1UL,
96 97
                      platform::errors::InvalidArgument(
                          "The input dim of BatchSquareSum shouold be 1"));
P
phlrain 已提交
98
    if (ctx->IsRuntime()) {
99 100
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSize")[0],
                        C,
101 102
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSize shouold be C"));
103 104
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSum")[0],
                        C,
105 106
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSum shouold be C"));
107 108
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("BatchSquareSum")[0],
                        C,
109 110
                        platform::errors::InvalidArgument(
                            "The input dim[0] of BatchSqureSum shouold be C"));
P
phlrain 已提交
111
    }
H
heqiaozhi 已提交
112

113 114 115 116 117
    if (enable_scale_and_shift) {
      auto scale_dim = ctx->GetInputDim("scale_w");
      auto bias_dim = ctx->GetInputDim("bias");

      PADDLE_ENFORCE_EQ(
118 119
          scale_dim.size(),
          1UL,
120 121 122 123
          platform::errors::InvalidArgument("the dimensionof scale"
                                            "must equal to 1. But received: "
                                            "the shape of scale is [%s], "
                                            "the dimensionof scale is [%d]",
124 125
                                            scale_dim,
                                            scale_dim.size()));
126
      PADDLE_ENFORCE_EQ(
127 128
          bias_dim.size(),
          1UL,
129 130 131 132
          platform::errors::InvalidArgument("the dimension of bias"
                                            "must equal to 1. But received: "
                                            "the shape of bias is [%s],"
                                            "the dimension of bias is [%d]",
133 134
                                            bias_dim,
                                            bias_dim.size()));
135 136

      bool check = true;
137
      if ((!ctx->IsRuntime()) &&
138
          (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
139 140 141 142
        check = false;
      }

      if (check) {
143 144
        PADDLE_ENFORCE_EQ(scale_dim[0],
                          C,
145 146 147
                          platform::errors::InvalidArgument(
                              "the shape of scale must equal to [%d]"
                              "But received: the shape of scale is [%d]",
148 149 150 151
                              C,
                              scale_dim[0]));
        PADDLE_ENFORCE_EQ(bias_dim[0],
                          C,
152 153 154
                          platform::errors::InvalidArgument(
                              "the shape of bias must equal to [%d]"
                              "But received: the shape of bias is [%d]",
155 156
                              C,
                              bias_dim[0]));
157 158 159
      }
    }

H
heqiaozhi 已提交
160 161 162 163 164 165 166 167 168
    ctx->SetOutputDim("Y", x_dims);
    ctx->SetOutputDim("Means", {C});
    ctx->SetOutputDim("Scales", {C});
    ctx->ShareLoD("X", "Y");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
169
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
H
heqiaozhi 已提交
170 171 172 173 174 175 176
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
    auto dn_param_type = framework::proto::VarType::FP32;
    if (input_data_type == framework::proto::VarType::FP64) {
      dn_param_type = framework::proto::VarType::FP64;
    }
177 178
    PADDLE_ENFORCE_EQ(dn_param_type,
                      OperatorWithKernel::IndicateVarDataType(ctx, "BatchSize"),
179 180
                      platform::errors::InvalidArgument(
                          "BatchSize input should be of float type"));
H
heqiaozhi 已提交
181
    PADDLE_ENFORCE_EQ(dn_param_type,
182
                      OperatorWithKernel::IndicateVarDataType(ctx, "BatchSum"),
183 184
                      platform::errors::InvalidArgument(
                          "BatchSum input should be of float type"));
185 186 187 188 189
    PADDLE_ENFORCE_EQ(
        dn_param_type,
        OperatorWithKernel::IndicateVarDataType(ctx, "BatchSquareSum"),
        platform::errors::InvalidArgument(
            "BatchSquareSum input should be of float type"));
H
heqiaozhi 已提交
190

191 192 193 194 195 196 197 198 199 200 201
    bool enable_scale_and_shift = ctx.Attr<bool>("enable_scale_and_shift");
    if (enable_scale_and_shift) {
      PADDLE_ENFORCE_EQ(dn_param_type,
                        OperatorWithKernel::IndicateVarDataType(ctx, "scale_w"),
                        platform::errors::InvalidArgument(
                            "scale_w input should be of float type"));
      PADDLE_ENFORCE_EQ(dn_param_type,
                        OperatorWithKernel::IndicateVarDataType(ctx, "bias"),
                        platform::errors::InvalidArgument(
                            "bias input should be of float type"));
    }
H
heqiaozhi 已提交
202 203 204
    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
H
heqiaozhi 已提交
205 206
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
207
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
H
heqiaozhi 已提交
208 209 210 211
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif
H
heqiaozhi 已提交
212

213 214
    return framework::OpKernelType(
        input_data_type, ctx.GetPlace(), layout, library);
H
heqiaozhi 已提交
215 216 217 218 219 220 221 222 223 224
  }
};

class DataNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    // AddAttr<bool>("is_test", "").SetDefault(false);
    AddAttr<float>("epsilon", "")
        .SetDefault(1e-4)
        .AddCustomChecker([](const float &epsilon) {
225 226
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f,
                            true,
227 228
                            platform::errors::InvalidArgument(
                                "'epsilon' should be between 0.0 and 0.001."));
H
heqiaozhi 已提交
229
        });
230 231 232 233
    AddAttr<int>("slot_dim",
                 "(int, default -1) Dimension of one slot if set, "
                 "when the input is concated by slot-wise embeddings")
        .SetDefault(-1);
H
hutuxian 已提交
234 235 236 237
    AddAttr<float>(
        "summary_decay_rate",
        "(float, default 0.9999999) The decay rate when update the summary")
        .SetDefault(0.9999999);
238 239 240 241 242 243 244 245 246 247 248 249 250
    AddAttr<bool>(
        "enable_scale_and_shift",
        "(bool, default false) Set to true to enable scale and shift such as "
        "batch_norm op")
        .SetDefault(false);
    AddInput("scale_w",
             "scale_w is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
    AddInput("bias",
             "bias is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
H
heqiaozhi 已提交
251
    AddAttr<std::string>("data_layout", "").SetDefault("NCHW");
H
hutuxian 已提交
252 253
    AddAttr<bool>("sync_stats", "(bool, default false) only used in multi-GPU")
        .SetDefault(false);
254 255
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
X
XiangGao 已提交
256 257
        .SetDefault(false)
        .AsExtra();
H
heqiaozhi 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    AddInput("X", "The input tensor");
    AddInput("BatchSize",
             "BatchSize is a 1-dimensional tensor of size C "
             "that is applied to the output");
    AddInput("BatchSum",
             "BatchSum is a 1-dimensional tensor of size C "
             "that is applied to the output");
    AddInput("BatchSquareSum",
             "The global BatchSquareSum (for training) or "
             "estimated BatchSquareSum (for testing)");
    AddOutput("Y", "result after normalization");
    AddOutput("Means",
              "Mean of the history data batch, "
              "will apply to output when training")
        .AsIntermediate();
    AddOutput("Scales",
              "Scales of the history data batch, "
              "will apply to output when training")
        .AsIntermediate();
    AddComment(R"DOC(
Data Normalization.

Can be used as a normalizer function for data
The required data format for this layer is one of the following:
1. NHWC `[batch, in_height, in_width, in_channels]`
2. NCHW `[batch, in_channels, in_height, in_width]`

)DOC");
  }
};

template <typename T>
class DataNormKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    // const bool is_test = ctx.Attr<bool>("is_test");
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
301
    PADDLE_ENFORCE_EQ(
302 303
        x_dims.size(),
        2,
304
        platform::errors::InvalidArgument("The Input dim size should be 2"));
H
heqiaozhi 已提交
305 306 307 308 309 310 311 312 313
    const int N = x_dims[0];
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("Means");
    auto *scales = ctx.Output<Tensor>("Scales");

    // alloc memory
314
    T *y_data = y->mutable_data<T>(ctx.GetPlace());
H
heqiaozhi 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328

    ConstEigenVectorArrayMap<T> b_size_arr(
        ctx.Input<Tensor>("BatchSize")->data<T>(), C);
    ConstEigenVectorArrayMap<T> b_sum_arr(
        ctx.Input<Tensor>("BatchSum")->data<T>(), C);
    ConstEigenVectorArrayMap<T> b_square_sum_arr(
        ctx.Input<Tensor>("BatchSquareSum")->data<T>(), C);
    EigenVectorArrayMap<T> means_arr(mean_out->mutable_data<T>(ctx.GetPlace()),
                                     C);
    EigenVectorArrayMap<T> scales_arr(scales->mutable_data<T>(ctx.GetPlace()),
                                      C);
    means_arr = b_sum_arr / b_size_arr;
    scales_arr = (b_size_arr / b_square_sum_arr).sqrt();

329 330
    const T *means_data = mean_out->data<T>();
    const T *x_data = x->data<T>();
331

332 333 334
    const T *scales_data = scales->data<T>();
    const int slot_dim = ctx.Attr<int>("slot_dim");
    T min_precision = 1e-7f;
H
heqiaozhi 已提交
335
    switch (data_layout) {
336
      case DataLayout::kNCHW:  // It's two dimensions, so make no difference
H
heqiaozhi 已提交
337
      case DataLayout::kNHWC: {
338 339
        // if slot_dim is set and batch size is larger than zero, we choose
        // to check if show number is zero, if so, skip normalization.
340 341
        if (slot_dim > 0 && N > 0 &&
            (!ctx.Attr<bool>("enable_scale_and_shift"))) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
          const int item_size = x->numel() / N;
          // location of show number in one embedding
          int offset = 0;
          for (int k = 0; k < N; ++k) {
            for (int i = 0; i < item_size; i += slot_dim) {
              if (x_data[offset + i] > -min_precision &&
                  x_data[offset + i] < min_precision) {
                // show = 0
                memset(y_data + offset + i, 0, sizeof(T) * slot_dim);
              } else {
                for (int j = i; j < i + slot_dim; ++j) {
                  y_data[offset + j] =
                      (x_data[offset + j] - means_data[j]) * scales_data[j];
                }
              }
            }

            offset += item_size;
          }
        } else {
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
          if (!ctx.Attr<bool>("enable_scale_and_shift") && slot_dim <= 0) {
            EigenArrayMap<T>(y_data, C, N) =
                (ConstEigenArrayMap<T>(x->data<T>(), C, N).colwise() -
                 means_arr)
                    .colwise() *
                scales_arr;
          } else if (ctx.Attr<bool>("enable_scale_and_shift") &&
                     slot_dim <= 0) {
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            const auto *bias = ctx.Input<Tensor>("bias");
            ConstEigenVectorArrayMap<T> scale_w_arr(scale_w->data<T>(), C);
            ConstEigenVectorArrayMap<T> bias_arr(bias->data<T>(), C);

            Eigen::Array<T, Eigen::Dynamic, 1> new_scale =
                scales_arr * scale_w_arr;
            Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
                bias_arr - means_arr * scales_arr * scale_w_arr;
            EigenArrayMap<T>(y_data, C, N) =
                (ConstEigenArrayMap<T>(x->data<T>(), C, N).colwise() *
                 new_scale)
                    .colwise() +
                new_bias;

          } else {
            const int item_size = x->numel() / N;
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            const auto *bias = ctx.Input<Tensor>("bias");
            const T *scale_w_data = scale_w->data<T>();
            const T *bias_data = bias->data<T>();
            // location of show number in one embedding
            int offset = 0;
            for (int k = 0; k < N; ++k) {
              for (int i = 0; i < item_size; i += slot_dim) {
                if (x_data[offset + i] > -min_precision &&
                    x_data[offset + i] < min_precision) {
                  // show = 0
                  memset(y_data + offset + i, 0, sizeof(T) * slot_dim);
                } else {
                  for (int j = i; j < i + slot_dim; ++j) {
                    y_data[offset + j] = ((x_data[offset + j] - means_data[j]) *
                                          scales_data[j]) *
                                             scale_w_data[j] +
                                         bias_data[j];
                  }
                }
              }  // end for i

              offset += item_size;
            }  // end for k
          }
412
        }
H
heqiaozhi 已提交
413 414 415
        break;
      }
      default:
416
        PADDLE_THROW(platform::errors::InvalidArgument(
Y
yaoxuefeng 已提交
417
            "Unknown storage order: %d, please use NCHW or NHWC", data_layout));
H
heqiaozhi 已提交
418 419 420 421 422 423 424 425 426 427
    }
  }
};

class DataNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
428
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "DataNormGrad");
429 430 431 432
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                   "Input",
                   framework::GradVarName("Y"),
                   "DataNormGrad");
H
hutuxian 已提交
433
    PADDLE_ENFORCE_EQ(
434 435
        ctx->HasOutput("BatchSize"),
        true,
H
hutuxian 已提交
436 437 438
        platform::errors::NotFound(
            "Output(BatchSize) of DataNormGradOp should not be null."));
    PADDLE_ENFORCE_EQ(
439 440
        ctx->HasOutput("BatchSum"),
        true,
H
hutuxian 已提交
441 442 443
        platform::errors::NotFound(
            "Output(BatchSum) of DataNormGradOp should not be null."));
    PADDLE_ENFORCE_EQ(
444 445
        ctx->HasOutput("BatchSquareSum"),
        true,
H
hutuxian 已提交
446 447
        platform::errors::NotFound(
            "Output(BatchSquareSum) of DataNormGradOp should not be null."));
448 449
    OP_INOUT_CHECK(ctx->HasInput("Means"), "Input", "Means", "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Scales"), "Input", "Scales", "DataNormGrad");
450 451
    bool enable_scale_and_shift =
        ctx->Attrs().Get<bool>("enable_scale_and_shift");
H
heqiaozhi 已提交
452
    // check output
453
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSize")),
454 455 456 457 458 459
                   "Output",
                   framework::GradVarName("BatchSize"),
                   "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSum")),
                   "Output",
                   framework::GradVarName("BatchSum"),
460 461
                   "DataNormGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("BatchSquareSum")),
462 463
                   "Output",
                   framework::GradVarName("BatchSquareSum"),
464
                   "DataNormGrad");
H
heqiaozhi 已提交
465 466 467 468 469 470 471 472

    const auto x_dims = ctx->GetInputDim("X");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);

473 474 475
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
H
heqiaozhi 已提交
476 477 478
    ctx->SetOutputDim(framework::GradVarName("BatchSize"), {C});
    ctx->SetOutputDim(framework::GradVarName("BatchSum"), {C});
    ctx->SetOutputDim(framework::GradVarName("BatchSquareSum"), {C});
479 480 481 482 483
    if (enable_scale_and_shift) {
      const bool has_scale_grad =
          ctx->HasOutput(framework::GradVarName("scale_w"));
      const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("bias"));

484 485
      PADDLE_ENFORCE_EQ((has_scale_grad == has_bias_grad),
                        true,
486 487 488 489
                        platform::errors::InvalidArgument(
                            "Output(Scale@GRAD) and Output(Bias@GRAD)"
                            "must be null or not be null at same time. "
                            "But now, has Scale@Grad=[%d], has Bias@GRAD=[%d]",
490 491
                            has_scale_grad,
                            has_bias_grad));
492 493 494 495 496
      if (has_scale_grad) {
        ctx->SetOutputDim(framework::GradVarName("scale_w"), {C});
        ctx->SetOutputDim(framework::GradVarName("bias"), {C});
      }
    }
H
heqiaozhi 已提交
497 498 499 500 501 502 503
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
504 505
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Y@GRAD can not be found for computation"));
H
heqiaozhi 已提交
506 507 508 509 510 511 512 513
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
514 515
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Y@GRAD can not be found for computation"));
H
heqiaozhi 已提交
516 517 518 519 520
    }

    // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
521
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
H
heqiaozhi 已提交
522

H
heqiaozhi 已提交
523 524
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
525
        this->CanMKLDNNBeUsed(ctx, data_type)) {
H
heqiaozhi 已提交
526 527 528 529 530
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

531
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
H
heqiaozhi 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
  }
};

template <typename T>
class DataNormGradKernel<platform::CPUDeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scales = ctx.Input<Tensor>("Scales");
    const auto *means = ctx.Input<Tensor>("Means");

    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto &x_dims = x->dims();
552
    PADDLE_ENFORCE_EQ(
553 554
        x_dims.size(),
        2,
555
        platform::errors::InvalidArgument("The Input dim size should be 2"));
H
heqiaozhi 已提交
556 557 558 559 560
    const int N = x_dims[0];
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    // init output
561 562 563 564
    Tensor *d_x = nullptr;
    if (ctx.HasOutput(framework::GradVarName("X"))) {
      d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    }
565

H
heqiaozhi 已提交
566 567 568 569 570 571
    auto *d_batch_size =
        ctx.Output<Tensor>(framework::GradVarName("BatchSize"));
    auto *d_batch_sum = ctx.Output<Tensor>(framework::GradVarName("BatchSum"));
    auto *d_batch_square_sum =
        ctx.Output<Tensor>(framework::GradVarName("BatchSquareSum"));

572 573 574 575 576
    const T *mean_data = means->data<T>();
    const T *inv_var_data = scales->data<T>();
    ConstEigenVectorArrayMap<T> mean_arr(mean_data, C);
    ConstEigenVectorArrayMap<T> inv_var_arr(inv_var_data, C);

577 578 579 580 581 582 583
    T *d_batch_size_data = d_batch_size->mutable_data<T>(ctx.GetPlace());
    T *d_batch_sum_data = d_batch_sum->mutable_data<T>(ctx.GetPlace());
    T *d_batch_square_sum_data =
        d_batch_square_sum->mutable_data<T>(ctx.GetPlace());
    EigenVectorArrayMap<T> d_batch_size_arr(d_batch_size_data, C);
    EigenVectorArrayMap<T> d_batch_sum_arr(d_batch_sum_data, C);
    EigenVectorArrayMap<T> d_batch_square_sum_arr(d_batch_square_sum_data, C);
H
heqiaozhi 已提交
584 585 586
    d_batch_size_arr.setZero();
    d_batch_sum_arr.setZero();
    d_batch_square_sum_arr.setZero();
587 588
    const T *x_data = x->data<T>();
    const T *means_data = means->data<T>();
H
heqiaozhi 已提交
589 590

    const float epsilon = ctx.Attr<float>("epsilon");
591 592 593
    T min_precision = 1e-7f;
    const int slot_dim = ctx.Attr<int>("slot_dim");
    switch (data_layout) {  // it's two dimensions, make no difference
H
heqiaozhi 已提交
594 595 596 597 598 599
      case DataLayout::kNCHW:
      case DataLayout::kNHWC: {
        ConstEigenVectorArrayMap<T> scales_arr(scales->data<T>(), C);
        ConstEigenVectorArrayMap<T> means_arr(means->data<T>(), C);
        ConstEigenArrayMap<T> x_arr(x->data<T>(), C, N);
        ConstEigenArrayMap<T> d_y_arr(d_y->data<T>(), C, N);
600 601 602
        if (d_x != nullptr) {
          EigenArrayMap<T> d_x_arr(d_x->mutable_data<T>(ctx.GetPlace()), C, N);
          d_x_arr.setZero();
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
          if (!ctx.Attr<bool>("enable_scale_and_shift")) {
            for (int nc = 0; nc < N; ++nc) {
              d_x_arr.col(nc) = d_y_arr.col(nc) * scales_arr;
            }
          } else {
            const auto *scale_w = ctx.Input<Tensor>("scale_w");
            auto *d_scale =
                ctx.Output<Tensor>(framework::GradVarName("scale_w"));
            auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("bias"));
            ConstEigenVectorArrayMap<T> scale_arr(scale_w->data<T>(), C);
            T *d_bias_data = nullptr;
            T *d_scale_data = nullptr;

            d_scale->mutable_data<T>(ctx.GetPlace());
            d_bias->mutable_data<T>(ctx.GetPlace());
            d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
            d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());

            EigenVectorArrayMap<T> d_bias_arr(d_bias_data, C);
            EigenVectorArrayMap<T> d_scale_arr(d_scale_data, C);
            Tensor dy_sum;
            dy_sum.Resize({C});
            dy_sum.mutable_data<T>(ctx.GetPlace());
            EigenVectorArrayMap<T> dy_sum_arr(
                dy_sum.mutable_data<T>(ctx.GetPlace()), C);
            Tensor dy_mul_x_sub_mean_mul_invstd_sum;
            dy_mul_x_sub_mean_mul_invstd_sum.Resize({C});
            dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(ctx.GetPlace());
            EigenVectorArrayMap<T> dy_mul_x_sub_mean_mul_invstd_sum_arr(
                dy_mul_x_sub_mean_mul_invstd_sum.mutable_data<T>(
                    ctx.GetPlace()),
                C);

            dy_sum_arr.setZero();
            dy_mul_x_sub_mean_mul_invstd_sum_arr.setZero();

            if (slot_dim <= 0) {
              for (int n = 0; n < N; ++n) {
                dy_sum_arr += d_y_arr.col(n);
                dy_mul_x_sub_mean_mul_invstd_sum_arr +=
                    ((x_arr.col(n) - mean_arr) * inv_var_arr * d_y_arr.col(n));
              }
              if (d_scale && d_bias) {
                d_bias_arr = dy_sum_arr;
                d_scale_arr = dy_mul_x_sub_mean_mul_invstd_sum_arr;
              }
              for (int nc = 0; nc < N; ++nc) {
                d_x_arr.col(nc) = d_y_arr.col(nc) * scales_arr * scale_arr;
              }
            } else {
              int offset = 0;
              const int item_size = x->numel() / N;
              T *d_x_data = d_x->mutable_data<T>(ctx.GetPlace());
              T *d_scale_data = d_scale->mutable_data<T>(ctx.GetPlace());
              T *d_bias_data = d_bias->mutable_data<T>(ctx.GetPlace());
              const T *dy_data = d_y->data<T>();
              const T *scales_data = scales->data<T>();
              const T *scale_w_data = scale_w->data<T>();
              const T *x_data = x->data<T>();
              for (int i = 0; i < item_size; i++) {
                d_bias_data[i] = 0;
                d_scale_data[i] = 0;
              }
              for (int k = 0; k < N; ++k) {
                for (int i = 0; i < item_size; i += slot_dim) {
                  if (!(x_data[offset + i] > -min_precision &&
                        x_data[offset + i] < min_precision)) {
                    // show != 0
                    for (int j = i; j < i + slot_dim; ++j) {
                      d_x_data[offset + j] = dy_data[offset + j] *
                                             scales_data[j] * scale_w_data[j];
                      d_bias_data[j] += dy_data[offset + j];
                      d_scale_data[j] += (x_data[offset + j] - mean_data[j]) *
                                         inv_var_data[j] * dy_data[offset + j];
                    }
                  }
                }
                offset += item_size;
              }
            }
683
          }
H
heqiaozhi 已提交
684 685
        }

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        if (slot_dim > 0 && N > 0) {
          // if slot_dim is set and batch size is larger than zero, we choose
          // to check if show number is zero, if so, skip update statistics.
          int offset = 0;
          const int item_size = x->numel() / N;
          for (int k = 0; k < N; ++k) {
            for (int i = 0; i < item_size; i += slot_dim) {
              if (!(x_data[offset + i] > -min_precision &&
                    x_data[offset + i] < min_precision)) {
                // show != 0
                for (int j = i; j < i + slot_dim; ++j) {
                  d_batch_size_data[j] += 1;
                  d_batch_sum_data[j] += x_data[offset + j];
                  d_batch_square_sum_data[j] +=
                      (x_data[offset + j] - means_data[j]) *
                      (x_data[offset + j] - means_data[j]);
                }
              }
            }
            offset += item_size;
          }

          for (int i = 0; i < item_size; i += slot_dim) {
            for (int j = i; j < i + slot_dim; ++j) {
              if (d_batch_size_data[j] >= 1) {
                d_batch_sum_data[j] /= d_batch_size_data[j];
                d_batch_square_sum_data[j] =
                    d_batch_square_sum_data[j] / d_batch_size_data[j] +
                    d_batch_size_data[j] * epsilon;
                d_batch_size_data[j] = 1;
              }
            }
          }
        } else {
          // calculate data sum and squre sum
          Eigen::Array<T, Eigen::Dynamic, 1> sample_sum(C);
          Eigen::Array<T, Eigen::Dynamic, 1> sample_square_sum(C);
          // calculate data sample sum and square sum
          sample_sum.setZero();
          sample_square_sum.setZero();
          for (int nc = 0; nc < N; ++nc) {
            sample_sum += x_arr.col(nc);
            sample_square_sum += (x_arr.col(nc) - means_arr).square();
          }
          // calculate gradient
          d_batch_size_arr.setConstant(N);
          d_batch_sum_arr = sample_sum;
          d_batch_square_sum_arr =
              sample_square_sum + d_batch_size_arr * epsilon;
H
heqiaozhi 已提交
735 736 737 738
        }
        break;
      }
      default:
739
        PADDLE_THROW(platform::errors::InvalidArgument(
Y
yaoxuefeng 已提交
740 741
            "Unknown storage order: %s, please use NCHW or NHWC",
            data_layout_str));
H
heqiaozhi 已提交
742 743 744 745
    }
  }
};

H
hong 已提交
746 747
template <typename T>
class DataNormGradMaker : public framework::SingleGradOpMaker<T> {
H
heqiaozhi 已提交
748
 public:
H
hong 已提交
749
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
heqiaozhi 已提交
750 751

 protected:
752
  void Apply(GradOpPtr<T> op) const override {
H
heqiaozhi 已提交
753
    op->SetType("data_norm_grad");
H
hong 已提交
754 755 756
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

757 758
    op->SetInput("scale_w", this->Input("scale_w"));
    op->SetInput("bias", this->Input("bias"));
H
hutuxian 已提交
759 760 761
    op->SetOutput("BatchSize", this->Input("BatchSize"));
    op->SetOutput("BatchSum", this->Input("BatchSum"));
    op->SetOutput("BatchSquareSum", this->Input("BatchSquareSum"));
H
hong 已提交
762 763 764 765 766 767 768 769 770 771
    op->SetInput("Scales", this->Output("Scales"));
    op->SetInput("Means", this->Output("Means"));

    op->SetAttrMap(this->Attrs());

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("BatchSize"),
                  this->InputGrad("BatchSize"));
    op->SetOutput(framework::GradVarName("BatchSum"),
                  this->InputGrad("BatchSum"));
H
heqiaozhi 已提交
772
    op->SetOutput(framework::GradVarName("BatchSquareSum"),
H
hong 已提交
773
                  this->InputGrad("BatchSquareSum"));
774 775 776
    op->SetOutput(framework::GradVarName("scale_w"),
                  this->InputGrad("scale_w"));
    op->SetOutput(framework::GradVarName("bias"), this->InputGrad("bias"));
H
heqiaozhi 已提交
777 778 779 780 781 782 783
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
784 785 786
REGISTER_OPERATOR(data_norm,
                  ops::DataNormOp,
                  ops::DataNormOpMaker,
H
hong 已提交
787 788
                  ops::DataNormGradMaker<paddle::framework::OpDesc>,
                  ops::DataNormGradMaker<paddle::imperative::OpBase>);
H
heqiaozhi 已提交
789 790 791
REGISTER_OPERATOR(data_norm_grad, ops::DataNormGradOp);

REGISTER_OP_CPU_KERNEL(
792 793
    data_norm,
    ops::DataNormKernel<paddle::platform::CPUDeviceContext, float>,
H
heqiaozhi 已提交
794 795 796 797 798
    ops::DataNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    data_norm_grad,
    ops::DataNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DataNormGradKernel<paddle::platform::CPUDeviceContext, double>);
799 800
REGISTER_OP_VERSION(data_norm).AddCheckpoint(
    R"ROC(
801
              upgrad data_norm op by adding scale_w to support scale and shift.)ROC",
802 803 804
    paddle::framework::compatible::OpVersionDesc().NewInput(
        "scale_w",
        "scale_w is used to do scale duirng data_norm like batchnorm "));