communicator.cc 52.3 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
16

17
#include <google/protobuf/text_format.h>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/distributed/ps/service/brpc_ps_client.h"
21
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
T
tangwei12 已提交
22
#include "paddle/fluid/platform/profiler.h"
23
#include "paddle/fluid/string/string_helper.h"
T
tangwei12 已提交
24

25 26 27
#define LEARNING_RATE_DECAY_COUNTER "@LR_DECAY_COUNTER@"
#define STEP_COUNTER "@PS_STEP_COUNTER@"

T
tangwei12 已提交
28 29 30 31
namespace paddle {
namespace distributed {

using framework::LoDTensor;
32
using phi::SelectedRows;
T
tangwei12 已提交
33

Y
yaoxuefeng 已提交
34 35
const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;

T
tangwei12 已提交
36 37 38 39 40 41 42 43
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

Communicator::Communicator() {}

Z
zhaocaibei123 已提交
44
void Communicator::InitGFlag(const std::string &gflags) {
45
  VLOG(3) << "Init With Gflags:" << gflags;
T
tangwei12 已提交
46 47 48 49 50 51 52 53 54 55 56
  std::vector<std::string> flags = paddle::string::split_string(gflags);
  if (flags.size() < 1) {
    flags.push_back("-max_body_size=314217728");
    flags.push_back("-bthread_concurrency=40");
    flags.push_back("-socket_max_unwritten_bytes=2048000000");
    flags.push_back("-max_connection_pool_size=1950");
  }
  auto it = flags.begin();
  flags.insert(it, "exe default");
  char *flags_ptr[flags.size()];
  for (size_t i = 0; i < flags.size(); ++i) {
57
    flags_ptr[i] = (char *)(flags[i].c_str());  // NOLINT
T
tangwei12 已提交
58 59 60
  }
  int params_cnt = flags.size();
  char **params_ptr = &(flags_ptr[0]);
61
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&params_cnt, &params_ptr, true);
T
tangwei12 已提交
62 63 64 65 66 67 68 69
}

std::once_flag Communicator::init_flag_;
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);

void Communicator::InitBrpcClient(
    const std::string &dist_desc,
    const std::vector<std::string> &host_sign_list) {
70
  auto fleet = paddle::distributed::FleetWrapper::GetInstance();
T
tangwei12 已提交
71
  if (_worker_ptr.get() == nullptr) {
72
    _worker_ptr = fleet->worker_ptr_;
T
tangwei12 已提交
73 74 75 76
  }
  return;
}

Z
zhaocaibei123 已提交
77
std::vector<uint64_t> Communicator::GetClientInfo() {
Z
zhaocaibei123 已提交
78
  std::vector<uint64_t> res = _ps_env.GetClientInfo();
Z
zhaocaibei123 已提交
79 80 81 82 83 84 85 86
  for (auto rr : res) {
    VLOG(2) << "Communicator::GetClientInfo " << rr;
  }
  return res;
}

int Communicator::SetClients(std::vector<uint64_t> &host_sign_list) {
  int node = host_sign_list.size();
Z
zhaocaibei123 已提交
87
  return _ps_env.SetPsClients(host_sign_list.data(), node);
Z
zhaocaibei123 已提交
88 89
}

T
tangwei12 已提交
90
void Communicator::RpcRecvDense(const std::vector<std::string> &varnames,
91 92
                                int table_id,
                                Scope *scope) {
93 94 95
  platform::RecordEvent record_event("Communicator->RpcRecvDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  std::vector<paddle::distributed::Region> regions;
  regions.reserve(varnames.size());
  for (auto &t : varnames) {
    Variable *var = scope->Var(t);
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      Variable *temp_var = xpu_temp_scope_->Var(t);
      LoDTensor *temp_tensor = temp_var->GetMutable<LoDTensor>();
      temp_tensor->Resize(tensor->dims());
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      paddle::distributed::Region reg(temp_data, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
              << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    } else {
      float *w = tensor->mutable_data<float>(tensor->place());
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto status =
Z
zhaocaibei123 已提交
120
      _worker_ptr->PullDense(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
121 122 123 124 125
  status.wait();

  for (auto &t : varnames) {
    Variable *var = scope->FindVar(t);
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
126
    VLOG(3) << "AsyncCommunicator::RecvNoBarrier Var " << t << " On gpu? "
T
tangwei12 已提交
127
            << platform::is_gpu_place(tensor->place());
Z
zhaocaibei123 已提交
128 129

    float *temp_recv_data = tensor->mutable_data<float>(platform::CPUPlace());
130
    VLOG(3) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
Z
zhaocaibei123 已提交
131 132
            << table_id << " Temp_data[0] " << temp_recv_data[0]
            << " Temp_data[-1] " << temp_recv_data[tensor->numel() - 1];
T
tangwei12 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      LoDTensor *temp_tensor =
          xpu_temp_scope_->FindVar(t)->GetMutable<LoDTensor>();
      framework::TensorCopy(*temp_tensor, tensor->place(), tensor);
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
              << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    }
  }

  return;
}

void Communicator::RpcSendDenseParam(const std::vector<std::string> &varnames,
150 151
                                     int table_id,
                                     const Scope &scope) {
152 153 154
  platform::RecordEvent record_event("Communicator->RpcSendDenseParam",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto &t : varnames) {
    Variable *var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      Variable *temp_var = xpu_temp_scope_->Var(t);
      LoDTensor *temp_tensor = temp_var->GetMutable<LoDTensor>();
      temp_tensor->Resize(tensor->dims());
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      framework::TensorCopy(*tensor, platform::CPUPlace(), temp_tensor);
      paddle::distributed::Region reg(temp_data, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcSendDenseParam Var " << t
              << " table_id " << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    } else {
      float *w = tensor->mutable_data<float>(place);
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcSendDenseParam Var " << t
              << " talbe_id " << table_id << " Temp_data[0] " << w[0]
              << " Temp_data[-1] " << w[tensor->numel() - 1];
    }
  }
  auto status =
Z
zhaocaibei123 已提交
184
      _worker_ptr->PushDenseParam(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
185 186 187 188 189 190
  status.wait();
  VLOG(4) << "RPC Send Dense Param " << table_id << " done!";
  return;
}

void Communicator::RpcSendDense(const CommContext &ctx, const Scope &scope) {
191 192 193
  platform::RecordEvent record_event("Communicator->RpcSendDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
194 195 196
  auto &var_names = ctx.origin_varnames;
  auto &table_id = ctx.table_id;
  auto dense_data = std::make_shared<std::vector<float>>();
Z
zhaocaibei123 已提交
197
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
198
  uint32_t num_per_shard =
Z
zhaocaibei123 已提交
199
      DenseDimPerShard(ctx.height_sections[0], request_call_num);
T
tangwei12 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  dense_data->resize(num_per_shard *
                     request_call_num);  // accessor->update_dim() = 1
  float *data = dense_data->data();
  uint32_t pos = 0;
  for (size_t i = 0; i < var_names.size(); ++i) {
    const LoDTensor tensor = scope.FindVar(var_names[i])->Get<LoDTensor>();
    size_t count = static_cast<size_t>(tensor.numel());
    const float *g = tensor.data<float>();
    CHECK(pos + count <= dense_data->size())
        << "invalid dense size, cur pos[" << pos << "]"
        << " data_num[" << count << "] size[" << dense_data->size() << "]";
    memcpy(data + pos, g, count * sizeof(float));
    pos += count;
  }

  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
219
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
220 221 222 223 224 225 226 227 228
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_DENSE_TABLE) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
        --_async_call_num;
      });
229 230
  auto status = _worker_ptr->PushDenseRawGradient(
      table_id, data, dense_data->size(), closure);
T
tangwei12 已提交
231 232 233 234
  status.wait();
  return;
}

235 236
void Communicator::RpcSendSparseParam(const std::string &varname,
                                      int table_id,
T
tangwei12 已提交
237
                                      const Scope &scope) {
238 239 240
  platform::RecordEvent record_event("Communicator->RpcSendSparseParam",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
241
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  std::vector<float *> push_g_vec;

  auto *send_var = scope.FindVar(varname);
  auto *tensor = send_var->GetMutable<framework::LoDTensor>();
  auto dim = tensor->dims()[1];
  uint64_t sparse_num = static_cast<uint64_t>(tensor->dims()[0]);
  std::vector<uint64_t> sparse_push_keys(sparse_num);
  std::iota(sparse_push_keys.begin(), sparse_push_keys.end(), 0);
  push_g_vec.reserve(sparse_num);

  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * dim);
  }

  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
259
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
260 261 262 263 264 265 266 267
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_SPARSE_PARAM) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
268 269
  auto status = _worker_ptr->PushSparseParam(table_id,
                                             sparse_push_keys.data(),
Z
zhaocaibei123 已提交
270
                                             (const float **)push_g_vec.data(),
271 272
                                             sparse_push_keys.size(),
                                             closure);
T
tangwei12 已提交
273 274 275 276
  status.wait();
  return;
}

277 278
void Communicator::RpcSendSparse(const std::string &var_name,
                                 int table_id,
T
tangwei12 已提交
279
                                 const Scope &scope) {
280 281 282
  platform::RecordEvent record_event("Communicator->RpcSendSparse",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
283
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
284 285 286 287
  std::vector<uint64_t> sparse_push_keys;
  std::vector<float *> push_g_vec;

  auto *send_var = scope.FindVar(var_name);
288
  auto *tensor = send_var->GetMutable<phi::SelectedRows>();
T
tangwei12 已提交
289
  auto dim = tensor->value().dims()[1];
290 291
  std::transform(tensor->rows().begin(),
                 tensor->rows().end(),
T
tangwei12 已提交
292
                 std::back_inserter(sparse_push_keys),
C
Chengmo 已提交
293
                 [&](int64_t id) { return static_cast<uint64_t>(id); });
T
tangwei12 已提交
294 295 296 297 298

  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->mutable_value()->data<float>() + i * dim);
  }

299 300 301 302 303 304 305 306 307 308 309 310
  // TODO(wangguanqun): padding_idx is not ignored, this is a bug.
  // if padding_idx == padding in datareader, the server will core.
  /*
  for (size_t i = 0; i < tensor->rows().size(); ++i) {
    uint64_t real_id = static_cast<uint64_t>(tensor->rows()[i]);
    if (real_id != 0) {
      sparse_push_keys.push_back(real_id);
      push_g_vec.push_back(tensor->mutable_value()->data<float>() + i * dim);
    }
  }
  */

T
tangwei12 已提交
311 312 313 314
  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
315
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
316 317 318 319 320 321 322 323 324
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_SPARSE_TABLE) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
        --_async_call_num;
      });
325 326 327 328 329 330
  auto status =
      _worker_ptr->PushSparseRawGradient(table_id,
                                         sparse_push_keys.data(),
                                         (const float **)push_g_vec.data(),
                                         sparse_push_keys.size(),
                                         closure);
T
tangwei12 已提交
331 332 333 334
  status.wait();
  return;
}

335 336
void Communicator::RpcRecvSparse(const std::string &varname,
                                 int table_id,
T
tangwei12 已提交
337
                                 Scope *scope) {
338 339 340
  platform::RecordEvent record_event("Communicator->RpcRecvSparse",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353
  auto *send_var = scope->Var(varname);
  auto *tensor = send_var->GetMutable<framework::LoDTensor>();
  auto dim = tensor->dims()[1];
  uint64_t sparse_num = static_cast<uint64_t>(tensor->dims()[0]);

  std::vector<uint64_t> sparse_push_keys(sparse_num);
  std::iota(sparse_push_keys.begin(), sparse_push_keys.end(), 0);

  std::vector<float *> push_g_vec;
  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * dim);
  }

354 355
  bool training = true;

356 357 358 359 360
  auto status = _worker_ptr->PullSparseParam((float **)push_g_vec.data(),
                                             table_id,  // NOLINT
                                             sparse_push_keys.data(),
                                             sparse_push_keys.size(),
                                             training);
T
tangwei12 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  status.wait();
  return;
}

void Communicator::InitParams(const RecvCtxMap &recv_varname_to_ctx) {
  if (trainer_id_ == 0) {
    for (auto &iter : recv_varname_to_ctx) {
      auto &table_id = iter.first;
      auto &varnames = iter.second;
      RpcSendDenseParam(varnames, table_id, *recv_scope_);
      VLOG(1) << "push dense param to table " << table_id
              << " from 0' trainer done";
    }
  }
  return;
}

378 379 380 381 382 383 384 385 386 387 388
void Communicator::PullDense(const RecvCtxMap &recv_varname_to_ctx) {
  for (auto &iter : recv_varname_to_ctx) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;
    RpcRecvDense(varnames, table_id, recv_scope_);
    VLOG(1) << "pull dense param to table " << table_id
            << " from 0' trainer done";
  }
  return;
}

T
tangwei12 已提交
389 390 391 392 393
void Communicator::RpcProfilerControl() {
  if (trainer_id_ == 0) {
    if (!do_server_profiler_ && platform::IsProfileEnabled()) {
      // send profiler start flag
      do_server_profiler_ = true;
Z
zhaocaibei123 已提交
394
      auto start_status = _worker_ptr->StartProfiler();
T
tangwei12 已提交
395 396 397
      start_status.wait();
    } else if (do_server_profiler_ && !platform::IsProfileEnabled()) {
      // send profiler end flag
Z
zhaocaibei123 已提交
398
      auto stop_status = _worker_ptr->StopProfiler();
T
tangwei12 已提交
399 400 401 402 403 404
      stop_status.wait();
      do_server_profiler_ = false;
    }
  }
}

405 406
void Communicator::SendGlobalStep(const CommContext &ctx,
                                  int batches,
407 408 409 410
                                  Scope *send_scope) {
  if (batches == 0) {
    return;
  }
411 412 413
  platform::RecordEvent record_event("Communicator->SendGlobalStep",
                                     platform::TracerEventType::Communication,
                                     1);
414
  auto &table_id = ctx.table_id;
Z
zhaocaibei123 已提交
415
  size_t request_call_num = _worker_ptr->GetServerNums();
416 417 418 419 420 421 422 423 424 425

  auto &var_name = STEP_COUNTER;
  auto *out_var = send_scope->Var(var_name);
  auto *out_t = out_var->GetMutable<framework::LoDTensor>();
  auto *data = out_t->mutable_data<int64_t>({1}, platform::CPUPlace());
  data[0] = static_cast<int64_t>(batches);
  VLOG(3) << "Communicator::SendGlobalStep send: " << batches;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
426
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
427 428 429 430 431 432 433 434
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_GLOBAL_STEP) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
Z
zhaocaibei123 已提交
435
  auto status = _worker_ptr->PushGlobalStep(table_id, data, closure);
436 437 438 439
  status.wait();
  return;
}

T
tangwei12 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
void AsyncCommunicator::RecvThread() {
  if (!independent_recv_) return;
  VLOG(3) << "Independent RecvThread Start and Wait";

  while (running_) {
    int grad_num = grad_num_.load();
    if (grad_num > min_send_grad_num_before_recv_) {
      RecvByCommunicator();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
  }
  VLOG(1) << "communicator stopped, independent recv thread exit";
}

void AsyncCommunicator::RecvByCommunicator() {
  if (!running_) return;
  RecvNoBarrier();
  VLOG(3) << "run recv graph end";
}

void AsyncCommunicator::RecvNoBarrier() {
  for (auto &iter : recv_varname_to_ctx_) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;
    RpcRecvDense(varnames, table_id, recv_scope_);
  }

  for (auto &iter : recv_varname_to_ctx_) {
    auto var_names = iter.second;
    for (auto &t : var_names) {
      Variable *var = recv_scope_->FindVar(t);
      LoDTensor *tensor = var->GetMutable<LoDTensor>();
474
      VLOG(3) << "AsyncCommunicator::RecvNoBarrier Var " << t << " On gpu? "
T
tangwei12 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
              << platform::is_gpu_place(tensor->place());
      if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
        LoDTensor *temp_tensor =
            xpu_temp_scope_->FindVar(t)->GetMutable<LoDTensor>();
        framework::TensorCopy(*temp_tensor, tensor->place(), tensor);
#endif
      }
    }
  }

  return;
}

void AsyncCommunicator::SendByCommunicator() {
  std::vector<std::future<void>> tasks;
  tasks.reserve(send_varname_to_ctx_.size());

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;

    auto send_recv_task = [this, &ctx] {
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;
      size_t var_nums = varnames.size();
      auto &check_queue = send_varname_to_queue_[varnames[0]];
      std::vector<std::vector<std::shared_ptr<Variable>>> vars;
      vars.resize(var_nums);
      int merged_var_num = 0;
      int wait_times = 0;
      while (merged_var_num < max_merge_var_num_) {
        if (check_queue->Size() == 0) {
          VLOG(4) << "wait_times -> " << wait_times;
          if (wait_times >= send_wait_times_) {
            break;
          }
          std::this_thread::sleep_for(std::chrono::milliseconds(10));
          wait_times++;
          continue;
        } else {
          wait_times = 0;
          for (size_t i = 0; i < var_nums; i++) {
            auto &var_name = varnames[i];
            auto &var_queue = send_varname_to_queue_[var_name];
            vars[i].push_back(var_queue->Pop());
          }
          merged_var_num++;
        }
      }
      if (merged_var_num == 0) return;

      for (size_t i = 0; i < var_nums; i++) {
        auto &var_name = varnames[i];
528 529 530 531 532
        if (var_name == STEP_COUNTER) {
          MergeVars<int64_t>(var_name, vars[i], send_scope_.get(), 1);
        } else {
          MergeVars<float>(var_name, vars[i], send_scope_.get(), 1);
        }
T
tangwei12 已提交
533
      }
Z
zhaocaibei123 已提交
534

535 536 537
      if (ctx.is_tensor_table) {
        SendGlobalStep(ctx, merged_var_num, send_scope_.get());
      } else if (ctx.is_sparse) {
T
tangwei12 已提交
538
        PADDLE_ENFORCE_EQ(
539 540
            varnames.size(),
            1,
T
tangwei12 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        RpcSendSparse(varnames[0], table_id, *send_scope_);
      } else {
        RpcSendDense(ctx, *send_scope_);
        if (!independent_recv_ &&
            recv_varname_to_ctx_.find(table_id) != recv_varname_to_ctx_.end()) {
          auto recv_varnames = recv_varname_to_ctx_.at(table_id);
          RpcRecvDense(recv_varnames, table_id, recv_scope_);
        }
      }
      if (independent_recv_) {
        grad_num_.fetch_add(1, std::memory_order_relaxed);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(send_recv_task)));
  }
  for (auto &task : tasks) {
    task.wait();
  }
  return;
}

Z
zhaocaibei123 已提交
564 565 566 567 568 569 570
void AsyncCommunicator::PushDensePostProcessing() {
  if (independent_recv_) {
    grad_num_.fetch_add(1, std::memory_order_relaxed);
  }
  return;
}

T
tangwei12 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
void AsyncCommunicator::MainThread() {
  VLOG(3) << "AsyncCommunicator MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    SendByCommunicator();
    RpcProfilerControl();
  }
  VLOG(1) << "communicator stopped, send thread exit";
}

Y
yaoxuefeng 已提交
586
void AsyncCommunicator::PullSparseToTensorSync(
587 588 589 590 591 592 593
    const uint64_t table_id,
    int fea_dim,
    uint64_t padding_id,
    platform::Place place,
    bool is_training,
    std::vector<const LoDTensor *> *inputs,
    std::vector<LoDTensor *> *outputs) {
Y
yaoxuefeng 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
  std::vector<uint64_t> fea_keys;
  std::vector<float *> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor *output = nullptr;
  float *output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor *tensor = inputs->at(index);
    const int64_t *ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output->set_lod(tensor->lod());
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
620 621
        memcpy(output_data + output_len,
               init_value.data(),
Y
yaoxuefeng 已提交
622 623 624 625 626 627 628
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
629 630 631 632 633
  auto status = _worker_ptr->PullSparse(pull_result_ptr.data(),
                                        table_id,
                                        fea_keys.data(),
                                        fea_keys.size(),
                                        is_training);
Y
yaoxuefeng 已提交
634 635 636 637 638 639 640 641 642
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
}

void AsyncCommunicator::PushSparseFromTensorAsync(
643 644 645 646 647 648 649
    const uint64_t table_id,
    int fea_dim,
    uint64_t padding_id,
    platform::Place place,
    std::vector<const framework::LoDTensor *> *inputs,
    const framework::LoDTensor *shows,
    const framework::LoDTensor *clks,
Y
yaoxuefeng 已提交
650 651 652 653 654 655 656 657
    std::vector<framework::LoDTensor *> *outputs) {
  int batch_size = -1;
  bool batch_size_consist = true;
  for (auto *input : *inputs) {
    int cur_batch_size =
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
      batch_size = cur_batch_size;
658
    } else if (batch_size != cur_batch_size) {
Y
yaoxuefeng 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
      // CHECK(batch_size == cur_batch_size);  // NOLINT
      batch_size_consist = false;
      break;
    }
  }
  CHECK(batch_size > 0);  // NOLINT

  int show_size =
      shows->lod().size() ? shows->lod()[0].size() - 1 : shows->dims()[0];
  CHECK(show_size == batch_size || show_size == 1);
  int clk_size =
      clks->lod().size() ? clks->lod()[0].size() - 1 : clks->dims()[0];
  CHECK(clk_size == batch_size || clk_size == 1);

  CHECK(outputs->size() == inputs->size());
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;

681 682
  VLOG(2) << "fleet.cc::emb_dim: " << fea_dim << " batch_size: " << batch_size
          << " batch_size_consist: " << batch_size_consist;
Y
yaoxuefeng 已提交
683 684 685 686 687 688 689 690

  // TODO(zhaocaibei123): check type of show/clk is int? float? uint64?
  // const long int* show_tensor = shows->data<int64_t>();
  // const long int* clk_tensor = clks->data<int64_t>();

  for (size_t index = 0; index < inputs->size(); ++index) {
    framework::LoDTensor *g_tensor = outputs->at(index);
    float *g = g_tensor->data<float>();
691

Y
yaoxuefeng 已提交
692 693 694 695 696
    if (batch_size_consist) {  // TODO(zhaocaibei123): add config
                               // scale_sparse_gradient_with_batch_size_
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / fea_dim, fea_dim);
697 698
      g_mat.rightCols(fea_dim - 2) *=
          batch_size;  // hard code here, because of cvm_grad op
Y
yaoxuefeng 已提交
699 700 701 702 703 704 705 706 707
    }

    const framework::LoDTensor *tensor = inputs->at(index);
    const int64_t *ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    output_len = 0;

    if (tensor->lod().size() > 0) {
      for (size_t i = 0; i < tensor->lod()[0].size() - 1; ++i) {
Z
zhangchunle 已提交
708
        for (size_t j = tensor->lod()[0][i]; j < tensor->lod()[0][i + 1];
Y
yaoxuefeng 已提交
709 710 711 712 713 714
             ++j, output_len += fea_dim) {
          uint64_t real_id = static_cast<uint64_t>(ids[j]);
          if (real_id == padding_id) {
            continue;
          }
          push_keys.emplace_back(real_id);
715
          push_values.emplace_back(fea_dim + 1);
Y
yaoxuefeng 已提交
716 717 718
          // slot show clk grad... consistent with CtrCommonPushValue defined in
          // ctr_accessor.h
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
719 720 721 722
          // push_values.back()[1] =
          //    (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
          // push_values.back()[2] =
          //    (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
Y
yaoxuefeng 已提交
723

724
          float *data = push_values.back().data() + 1;  // hard code here
Y
yaoxuefeng 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737

          memcpy(data, g + output_len, sizeof(float) * fea_dim);

          ++input_idx;
        }
      }
    } else {
      for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
        uint64_t real_id = static_cast<uint64_t>(ids[i]);
        if (real_id == padding_id) {
          continue;
        }
        push_keys.emplace_back(real_id);
738
        push_values.emplace_back(fea_dim + 1);
Y
yaoxuefeng 已提交
739 740 741
        // slot show clk grad... consistent with CtrCommonPushValue defined in
        // ctr_accessor.h
        push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
742 743 744 745
        // push_values.back()[1] =
        //    (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
        // push_values.back()[2] =
        //    (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
Y
yaoxuefeng 已提交
746

747
        float *data = push_values.back().data() + 1;
Y
yaoxuefeng 已提交
748 749 750 751 752 753

        memcpy(data, g + output_len, sizeof(float) * fea_dim);

        ++input_idx;
      }
    }
Z
zhangchunle 已提交
754
    CHECK(static_cast<int64_t>(output_len) == g_tensor->numel());
Y
yaoxuefeng 已提交
755 756 757 758 759 760 761 762 763
  }

  std::vector<float *> push_g_vec(input_idx, nullptr);

  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }

  PADDLE_ENFORCE_EQ(
764 765
      this->Check(table_id),
      true,
Y
yaoxuefeng 已提交
766 767
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
768 769
  auto status = _worker_ptr->PushSparse(table_id,
                                        push_keys.data(),
Z
zhaocaibei123 已提交
770 771
                                        (const float **)push_g_vec.data(),
                                        push_keys.size());
Y
yaoxuefeng 已提交
772 773
}

T
tangwei12 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
void HalfAsyncCommunicator::MainThread() {
  VLOG(3) << "HalfAsyncCommunicator MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    SendByCommunicator();
    BarrierSend();
    RecvByCommunicator();
    BarrierRecv();
    BarrierWeakUp();
  }
  VLOG(1) << "communicator stopped, send thread exit";
}

void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RecvCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);
  send_scope_.reset(new Scope());
  xpu_temp_scope_.reset(new Scope());
  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    auto &varnames = ctx.origin_varnames;
    for (auto &var_name : varnames) {
      send_varname_to_queue_[var_name] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              send_queue_size_);
    }
  }
  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
}

AsyncCommunicator::~AsyncCommunicator() {
  running_ = false;
  if (main_thread_) main_thread_->join();
  if (recv_thread_) recv_thread_->join();
}

void AsyncCommunicator::Start() {
  VLOG(1) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    waiting_ = true;
    running_ = true;
    // flushing_ = false;
    BarrierTriggerReset(max_merge_var_num_);
    // start send and recv thread
    main_thread_.reset(
        new std::thread(std::bind(&AsyncCommunicator::MainThread, this)));
    if (independent_recv_) {
      recv_thread_.reset(
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
    }
  }
}

void AsyncCommunicator::Stop() {
Z
zhaocaibei123 已提交
839
  VLOG(1) << "Communicator stop begin";
T
tangwei12 已提交
840 841 842 843
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
Z
zhaocaibei123 已提交
844
    // _worker_ptr->FinalizeWorker();
Z
zhaocaibei123 已提交
845
    VLOG(1) << "client finalize_worker done";
T
tangwei12 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
    if (main_thread_) {
      VLOG(1) << "stop main thread";
      main_thread_->join();
      main_thread_.reset(nullptr);
    }
  }
  VLOG(1) << "Communicator stop done";
}

bool AsyncCommunicator::Check(const std::vector<std::string> &var_tables) {
  PADDLE_ENFORCE_EQ(
862 863
      var_tables.size(),
      1,
T
tangwei12 已提交
864 865 866
      platform::errors::InvalidArgument("var_tables.size() == 1 is permitted"));

  auto table_name = var_tables[0];
867
  if (send_varname_to_ctx_.find(table_name) == send_varname_to_ctx_.end()) {
T
tangwei12 已提交
868
    return false;
869 870 871 872 873
  }
  if (table_name == STEP_COUNTER) {
    VLOG(3) << "send step_counter into queue";
    auto tmp_var = std::make_shared<Variable>();
    auto *tensor = tmp_var->GetMutable<framework::LoDTensor>();
874
    tensor->Resize(phi::make_ddim({1}));
875 876 877 878
    auto *out_d = tensor->mutable_data<int64_t>(platform::CPUPlace());
    out_d[0] = 1;
    send_varname_to_queue_[table_name]->Push(tmp_var);
  }
T
tangwei12 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
  return true;
}

bool AsyncCommunicator::Check(const int table_id) {
  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    if (ctx.table_id == table_id) return true;
  }
  return false;
}

void AsyncCommunicator::Send(const std::vector<std::string> &var_names,
                             const framework::Scope &scope) {
  waiting_ = false;
  for (size_t i = 0; i < var_names.size(); i++) {
    auto *var = scope.FindVar(var_names[i]);
    auto tmp_grad_var = std::make_shared<Variable>();
    framework::CopyVariable(*var, tmp_grad_var.get());
    send_varname_to_queue_[var_names[i]]->Push(tmp_grad_var);
  }
}

void HalfAsyncCommunicator::Clean() {
  for (auto &iter : send_varname_to_queue_) {
    auto &var_name = iter.first;
    auto &var_queue = iter.second;

    while (var_queue->Size() > 0) {
      var_queue->Pop();
    }

    VLOG(3) << "clean var: " << var_name << " done";
  }
}

void HalfAsyncCommunicator::BarrierTriggerDecrement() {
  barrier_trigger_--;
  VLOG(3) << "BarrierTriggerDecrement decrement barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::BarrierTriggerReset(int initial_val) {
  barrier_trigger_.store(initial_val);

  VLOG(3) << "BarrierTriggerReset reset barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::Barrier() {
  barrier_counter_++;

  if (!running_) {
    VLOG(3) << "Communicator is not running, release barrier";
    return;
  }

  {
    std::unique_lock<std::mutex> lk(barrier_mutex_);
    barrier_cond_.wait(lk, [this] { return (barrier_counter_ == 0); });
  }
}

int HalfAsyncCommunicator::BatchesCounter() {
  while (running_) {
    if (barrier_counter_.load() >= barrier_trigger_.load() &&
        barrier_trigger_.load() != 0) {
      break;
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
  }

  return barrier_counter_.load();
}

void HalfAsyncCommunicator::SendByCommunicator() {
  int batches = BatchesCounter();
  VLOG(1) << "HalfAsyncCommunicator::BatchesCounter = " << batches;
  if (batches <= 0) return;

  std::vector<std::future<void>> tasks;
  tasks.reserve(send_varname_to_ctx_.size());

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    auto send_recv_task = [this, &ctx, batches] {
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;
      size_t var_nums = varnames.size();

      std::vector<std::vector<std::shared_ptr<Variable>>> vars;
      vars.resize(var_nums);
      for (size_t i = 0; i < var_nums; i++) {
        auto &var_name = varnames[i];
        auto &var_queue = send_varname_to_queue_[var_name];
        for (int j = 0; j < batches; j++) vars[i].push_back(var_queue->Pop());
        MergeVars<float>(var_name, vars[i], send_scope_.get(), 1);
      }

      if (ctx.is_sparse) {
        PADDLE_ENFORCE_EQ(
980 981
            varnames.size(),
            1,
T
tangwei12 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        RpcSendSparse(varnames[0], table_id, *send_scope_);
      } else {
        RpcSendDense(ctx, *send_scope_);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(send_recv_task)));
  }
  for (auto &task : tasks) {
    task.wait();
  }
  return;
}

void HalfAsyncCommunicator::BarrierWeakUp() {
  barrier_counter_.store(0);
  barrier_cond_.notify_all();
}

void SyncCommunicator::BarrierSend() {
  if (!running_) return;
  BarrierWithTable(0);
  VLOG(4) << "BarrierSend with SyncCommunicator";
}

void SyncCommunicator::BarrierRecv() {
  if (!running_) return;
  BarrierWithTable(1);

  VLOG(4) << "BarrierRecv with SyncCommunicator";
}

void GeoCommunicator::Send(const std::vector<std::string> &var_names,
                           const framework::Scope &scope) {
1017 1018
  platform::RecordEvent record_event(
      "GeoCommunicator->Send", platform::TracerEventType::Communication, 1);
T
tangwei12 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
  waiting_ = false;
  auto before_send = GetCurrentUS();
  auto table_name = var_names[0];

  size_t splited_var_nums =
      send_varname_to_ctx_[table_name].splited_varnames.size();

  std::unordered_map<std::string, std::unordered_set<int64_t>> ids_table;

  for (size_t j = 0; j < splited_var_nums; j++) {
    ids_table.insert(std::pair<std::string, std::unordered_set<int64_t>>(
        send_varname_to_ctx_[table_name].splited_varnames[j],
        std::unordered_set<int64_t>()));
  }

  auto *var = scope.FindVar(table_name);

1036 1037
  PADDLE_ENFORCE_EQ(var->IsType<phi::SelectedRows>(),
                    true,
T
tangwei12 已提交
1038 1039
                    platform::errors::InvalidArgument(
                        "Only need to send Sparse Grad in Geo mode."));
1040
  auto &rows = var->Get<phi::SelectedRows>().rows();
T
tangwei12 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

  // insert ids which has not been record
  for (size_t j = 0; j < rows.size(); j++) {
    auto ep_idx = rows[j] % splited_var_nums;
    ids_table.at(send_varname_to_ctx_[table_name].splited_varnames[ep_idx])
        .insert(rows[j]);
  }

  for (auto &iter : ids_table) {
    auto &key = iter.first;
    auto &sparse_ids_set = iter.second;
    auto sparse_ids_vec = std::make_shared<std::vector<int64_t>>();
    sparse_ids_vec->assign(sparse_ids_set.begin(), sparse_ids_set.end());
Z
zhaocaibei123 已提交
1054
    sparse_id_queues_.at(key)->Put(sparse_ids_vec);
T
tangwei12 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    VLOG(3) << "push " << sparse_ids_vec->size() << " ids to " << key
            << "'s queue";
  }

  auto after_send = GetCurrentUS();
  VLOG(2) << "run send op finish. use time " << (after_send - before_send);
}

void GeoCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                               const RecvCtxMap &recv_varname_to_ctx,
                               Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

  PADDLE_ENFORCE_GT(
1071 1072
      send_varname_to_ctx.size(),
      0,
T
tangwei12 已提交
1073 1074 1075 1076
      platform::errors::InvalidArgument("send var contexts can not be zero"));

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
Z
zhaocaibei123 已提交
1077 1078 1079 1080
    if (!ctx.is_sparse) {
      parallel_task_nums_ += 1;
      continue;
    }
T
tangwei12 已提交
1081 1082
    auto &varnames = ctx.origin_varnames;
    PADDLE_ENFORCE_EQ(
1083 1084
        varnames.size(),
        1,
T
tangwei12 已提交
1085 1086 1087 1088 1089
        platform::errors::InvalidArgument(
            "sparse variables can only be merged by one variables"));
    for (auto &splited_var : ctx.splited_varnames) {
      parallel_task_nums_ += 1;
      sparse_id_queues_.insert(
1090 1091 1092
          std::pair<std::string,
                    paddle::framework::Channel<
                        std::shared_ptr<std::vector<int64_t>>>>(
T
tangwei12 已提交
1093
              splited_var,
Z
zhaocaibei123 已提交
1094 1095
              paddle::framework::MakeChannel<
                  std::shared_ptr<std::vector<int64_t>>>(send_queue_size_)));
T
tangwei12 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    }
  }

  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));

  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
}

void GeoCommunicator::InitParams(const RecvCtxMap &recv_varname_to_ctx) {
  std::vector<std::future<void>> tasks;
  tasks.reserve(recv_varname_to_ctx_.size());

  for (auto &iter : recv_varname_to_ctx_) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;

    auto recv_task = [this, &table_id, &varnames] {
      InitDense(varnames, table_id);
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(recv_task)));
  }

  for (auto &task : tasks) {
    task.wait();
  }

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
T
tangwei12 已提交
1126
    if (!ctx.is_sparse) continue;
T
tangwei12 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    auto &varname = ctx.origin_varnames[0];
    auto &table_id = ctx.table_id;
    auto param = varname.substr(0, varname.size() - 5);
    InitSparse(param, table_id);
  }
  return;
}

void GeoCommunicator::InitDense(std::vector<std::string> &varnames,
                                int table_id) {
  if (trainer_id_ == 0) {
    RpcSendDenseParam(varnames, table_id, *recv_scope_);
    BarrierWithTable(1);
T
tangwei12 已提交
1140
    VLOG(1) << "push dense param to table " << table_id
T
tangwei12 已提交
1141 1142 1143 1144
            << " from 0' trainer done";
  } else {
    BarrierWithTable(1);
    RpcRecvDense(varnames, table_id, recv_scope_);
T
tangwei12 已提交
1145
    VLOG(1) << "pull dense param to table " << table_id
T
tangwei12 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            << " from 0' trainer done";
  }

  // copy to old_scope
  for (auto &t : varnames) {
    auto *global_var = recv_scope_->FindVar(t);
    global_var->GetMutable<framework::LoDTensor>();
    auto *old_var = old_scope_->Var(t);
    old_var->GetMutable<framework::LoDTensor>();
    framework::CopyVariable(*global_var, old_var);
Z
zhaocaibei123 已提交
1156 1157 1158 1159
    // init pserver_scope_
    auto *pserver_var = pserver_scope_->Var(t);
    pserver_var->GetMutable<framework::LoDTensor>();
    framework::CopyVariable(*global_var, pserver_var);
T
tangwei12 已提交
1160 1161 1162 1163 1164
  }
  VLOG(1) << "init dense table " << table_id << " done";
}

void GeoCommunicator::SendDense(const CommContext &send_ctx) {
1165 1166 1167
  platform::RecordEvent record_event("GeoCommunicator->SendDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1168 1169 1170 1171 1172 1173 1174
  auto &var_names = send_ctx.origin_varnames;
  auto &table_id = send_ctx.table_id;
  for (auto &varname : var_names) {
    auto param_name = GradToParam(varname);
    auto *var_latest = recv_scope_->FindVar(param_name);
    auto *var_timestamp = old_scope_->FindVar(param_name);

1175 1176
    PADDLE_ENFORCE_EQ(var_latest->IsInitialized(),
                      true,
T
tangwei12 已提交
1177 1178
                      platform::errors::Unavailable(
                          "%s is not initialized, please check", param_name));
1179 1180
    PADDLE_ENFORCE_EQ(var_timestamp->IsInitialized(),
                      true,
T
tangwei12 已提交
1181 1182 1183 1184 1185 1186
                      platform::errors::Unavailable(
                          "%s is not initialized, please check", param_name));

    auto &t_latest = var_latest->Get<framework::LoDTensor>();
    auto t_timestamp = var_timestamp->GetMutable<framework::LoDTensor>();

W
Wilber 已提交
1187
    paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1188 1189 1190 1191
    auto *var_delta = delta_scope_->Var(varname);
    auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
    t_delta->mutable_data<float>(t_latest.dims(), cpu_ctx.GetPlace());

1192
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
1193 1194 1195 1196
    blas.VSUB(t_latest.numel(),
              t_latest.data<float>(),
              t_timestamp->data<float>(),
              t_delta->data<float>());
T
tangwei12 已提交
1197 1198 1199 1200

    float coefficient = 1.0 / static_cast<float>(trainers_);
    blas.SCAL(t_latest.numel(), coefficient, t_delta->data<float>());

1201 1202 1203 1204
    blas.VADD(t_latest.numel(),
              t_timestamp->data<float>(),
              t_delta->data<float>(),
              t_timestamp->data<float>());
T
tangwei12 已提交
1205 1206 1207 1208 1209 1210 1211
  }
  RpcSendDense(send_ctx, *delta_scope_);
  VLOG(1) << "Finish Send Dense " << var_names[0] << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::RecvDense(const CommContext &send_ctx) {
1212 1213 1214
  platform::RecordEvent record_event("GeoCommunicator->RecvDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1215 1216 1217 1218 1219 1220
  auto &table_id = send_ctx.table_id;
  auto &varnames = recv_varname_to_ctx_.at(table_id);
  // 1. recv from pserver
  RpcRecvDense(varnames, table_id, pserver_scope_.get());

  // 2.1 pserver - old => delta; 2.2 latest + old => latest 2.3 old => pserver
W
Wilber 已提交
1221
  paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
  for (auto &varname : varnames) {
    auto *var_latest = recv_scope_->FindVar(varname);
    auto t_latest = var_latest->GetMutable<framework::LoDTensor>();

    auto *var_old = old_scope_->FindVar(varname);
    auto t_old = var_old->GetMutable<framework::LoDTensor>();

    auto *var_pserver = pserver_scope_->FindVar(varname);
    auto t_pserver = var_pserver->Get<framework::LoDTensor>();

    auto *var_delta = delta_scope_->Var(varname);
    auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
    t_delta->mutable_data<float>(t_latest->dims(), cpu_ctx.GetPlace());

1236
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
1237 1238 1239
    blas.VSUB(t_latest->numel(),
              t_pserver.data<float>(),
              t_old->data<float>(),
T
tangwei12 已提交
1240
              t_delta->data<float>());
1241 1242 1243 1244 1245 1246
    blas.VADD(t_latest->numel(),
              t_latest->data<float>(),
              t_delta->data<float>(),
              t_latest->data<float>());
    blas.VCOPY(
        t_latest->numel(), t_pserver.data<float>(), t_old->data<float>());
T
tangwei12 已提交
1247 1248 1249 1250 1251 1252
  }
  VLOG(1) << "Finish Recv Dense " << varnames[0] << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::InitSparse(const std::string &var_name, int table_id) {
T
tangwei12 已提交
1253
  VLOG(1) << "Init Sparse " << var_name << " : table " << table_id << " begin.";
T
tangwei12 已提交
1254 1255 1256
  if (trainer_id_ == 0) {
    RpcSendSparseParam(var_name, table_id, *recv_scope_);
    BarrierWithTable(1);
T
tangwei12 已提交
1257
    VLOG(1) << "push sparse param to table " << table_id
T
tangwei12 已提交
1258 1259 1260 1261
            << " from 0' trainer done";
  } else {
    BarrierWithTable(1);
    RpcRecvSparse(var_name, table_id, recv_scope_);
T
tangwei12 已提交
1262
    VLOG(1) << "pull sparse param to table " << table_id
T
tangwei12 已提交
1263 1264 1265
            << " from 0' trainer done";
  }

T
tangwei12 已提交
1266
  VLOG(1) << "Init Sparse " << var_name << " : table " << table_id << " done.";
T
tangwei12 已提交
1267 1268 1269 1270 1271 1272 1273 1274
  auto *global_var = recv_scope_->FindVar(var_name);
  auto *var = old_scope_->Var(var_name);
  framework::CopyVariable(*global_var, var);
  return;
}

std::vector<int64_t> GeoCommunicator::MergeSparseIds(
    const std::string &send_varname) {
1275 1276 1277
  platform::RecordEvent record_event("GeoCommunicator->MergeSparseIds",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1278 1279 1280 1281 1282 1283
  size_t merge_num = 0, wait_times = 0;
  std::unordered_set<int64_t> sparse_ids;
  while (merge_num < static_cast<size_t>(max_merge_var_num_)) {
    VLOG(3) << "Merge Number of " << send_varname << " = " << merge_num;
    if (sparse_id_queues_.at(send_varname)->Size() > 0) {
      wait_times = 0;
Z
zhaocaibei123 已提交
1284 1285
      std::shared_ptr<std::vector<int64_t>> pop_ids = nullptr;
      sparse_id_queues_.at(send_varname)->Get(pop_ids);
T
tangwei12 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
      for (size_t j = 0; j < pop_ids->size(); j++) {
        sparse_ids.insert(pop_ids->at(j));
      }
      merge_num += 1;
      VLOG(3) << "sparse_id_queues_(" << send_varname << ") pushed";
    } else if (sparse_id_queues_.at(send_varname)->Size() == 0) {
      VLOG(3) << "wait_times -> " << wait_times;
      if (wait_times >= static_cast<size_t>(send_wait_times_)) {
        break;
      }
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
      wait_times++;
      continue;
    }
  }
  std::vector<int64_t> res;
  res.assign(sparse_ids.begin(), sparse_ids.end());
  return res;
}

void GeoCommunicator::SendSparse(const std::string &varname,
1307 1308
                                 std::vector<int64_t> &sparse_ids,
                                 int table_id,
T
tangwei12 已提交
1309
                                 int ep_idx) {
1310 1311 1312
  platform::RecordEvent record_event("GeoCommunicator->SendSparse",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
1313 1314 1315
  if (sparse_ids.size() == 0) {
    return;
  }
T
tangwei12 已提交
1316 1317 1318 1319 1320 1321 1322 1323
  std::string param_name = SplitedGradToParam(varname);
  VLOG(1) << "In GeoCommunicator::SendSparse(" << varname << " " << param_name
          << ", ids.size = " << sparse_ids.size() << ", table_id: " << table_id
          << ", ep_idx: " << ep_idx;

  auto *var_latest = recv_scope_->FindVar(param_name);
  auto *var_old = old_scope_->FindVar(param_name);

1324 1325
  PADDLE_ENFORCE_EQ(var_latest->IsInitialized(),
                    true,
T
tangwei12 已提交
1326 1327
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", param_name));
1328 1329
  PADDLE_ENFORCE_EQ(var_old->IsInitialized(),
                    true,
T
tangwei12 已提交
1330 1331 1332 1333 1334 1335 1336
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", param_name));

  auto &t_latest = var_latest->Get<framework::LoDTensor>();
  auto *t_old = var_old->GetMutable<framework::LoDTensor>();

  auto dims1 = t_latest.dims()[1];
W
Wilber 已提交
1337
  paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1338 1339

  auto *var_delta = delta_scope_->Var(varname);
1340
  auto *t_delta = var_delta->GetMutable<phi::SelectedRows>();
T
tangwei12 已提交
1341 1342 1343 1344 1345 1346 1347
  auto *var_t_value = t_delta->mutable_value();
  var_t_value->Resize({static_cast<int64_t>(sparse_ids.size()), dims1});
  auto *t_value = var_t_value->mutable_data<float>(cpu_ctx.GetPlace());

  t_delta->set_rows(sparse_ids);
  t_delta->set_height(t_latest.dims()[0]);

1348
  auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1349 1350 1351 1352
  float coefficient = 1.0 / static_cast<float>(trainers_);

  std::vector<float *> push_g_vec;
  for (auto j = 0; j < static_cast<int>(sparse_ids.size()); ++j) {
1353 1354
    blas.VSUB(dims1,
              t_latest.data<float>() + sparse_ids[j] * dims1,
T
tangwei12 已提交
1355 1356 1357
              t_old->data<float>() + sparse_ids[j] * dims1,
              t_value + j * dims1);
    blas.SCAL(dims1, coefficient, t_value + j * dims1);
1358 1359
    blas.VADD(dims1,
              t_old->data<float>() + sparse_ids[j] * dims1,
T
tangwei12 已提交
1360 1361 1362
              t_value + j * dims1,
              t_old->data<float>() + sparse_ids[j] * dims1);
    push_g_vec.push_back(t_value + j * dims1);
Z
zhaocaibei123 已提交
1363 1364 1365 1366

    VLOG(5) << "DEBUG GeoCommunicator::SendSparse send sparse key "
            << sparse_ids[j] << " value[0] " << push_g_vec[j][0]
            << " value[-1] " << push_g_vec[j][dims1 - 1];
T
tangwei12 已提交
1367 1368 1369 1370 1371
  }

  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(1, [this](void *done) {
    int ret = 0;
1372
    auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
1373 1374 1375 1376 1377 1378
    if (closure->check_response(0, PS_PUSH_SPARSE_TABLE) != 0) {
      ret = -1;
    }
    closure->set_promise_value(ret);
    --_async_call_num;
  });
Z
zhaocaibei123 已提交
1379
  auto status = _worker_ptr->PushSparseRawGradientPartial(
1380 1381 1382 1383 1384 1385
      table_id,
      (const uint64_t *)sparse_ids.data(),
      (const float **)push_g_vec.data(),
      sparse_ids.size(),
      closure,
      ep_idx);
T
tangwei12 已提交
1386 1387 1388 1389 1390 1391 1392
  status.wait();

  VLOG(1) << "Finish Send Sparse " << varname
          << ", ids.size = " << sparse_ids.size() << ", table_id: " << table_id;
  return;
}

1393 1394
void GeoCommunicator::RecvSparse(const std::string &varname,
                                 int table_id,
T
tangwei12 已提交
1395
                                 int ep_idx) {
1396 1397 1398
  platform::RecordEvent record_event("GeoCommunicator->RecvSparse",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1399 1400 1401
  // 1. recv from pserver
  std::vector<uint64_t> keys;
  std::vector<float> values;
Z
zhaocaibei123 已提交
1402
  auto status = _worker_ptr->PullGeoParam(table_id, &values, &keys, ep_idx);
T
tangwei12 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
  status.wait();

  std::string param = SplitedGradToParam(varname);
  VLOG(1) << "RecvSparse receive var: " << varname << " " << param << ", "
          << table_id << "; ids Size: " << keys.size()
          << "; values size: " << values.size();

  auto *var_latest = recv_scope_->FindVar(param);
  auto *var_old = old_scope_->FindVar(param);

  auto *t_latest = var_latest->GetMutable<framework::LoDTensor>();
  auto *t_old = var_old->GetMutable<framework::LoDTensor>();

  auto dims1 = t_latest->dims()[1];
  auto numel = keys.size() * dims1;

  std::vector<float> v_delta;
  v_delta.resize(numel);

W
Wilber 已提交
1422
  paddle::platform::CPUDeviceContext cpu_ctx;
1423
  auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1424 1425

  for (auto j = 0; j < static_cast<int>(keys.size()); ++j) {
Z
zhaocaibei123 已提交
1426 1427 1428
    VLOG(5) << "DEBUG GeoCommunicator::RecvSparse recv sparse key" << keys[j]
            << "value[0] " << values[j * dims1] << " value[-1] "
            << values[j * dims1 + dims1 - 1];
T
tangwei12 已提交
1429 1430 1431
    float *latest_data = t_latest->data<float>() + keys[j] * dims1;
    float *old_data = t_old->data<float>() + keys[j] * dims1;
    // pserver - old => delta
1432 1433
    blas.VSUB(
        dims1, values.data() + j * dims1, old_data, v_delta.data() + j * dims1);
T
tangwei12 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    // latest + delta => latest
    blas.VADD(dims1, latest_data, v_delta.data() + j * dims1, latest_data);
    // pserver => old
    blas.VCOPY(dims1, values.data() + j * dims1, old_data);
  }
  VLOG(1) << "Finish Recv Sparse " << param << ", table_id: " << table_id;
}

void GeoCommunicator::MainThread() {
  VLOG(3) << "MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    std::vector<std::future<void>> tasks;
    tasks.reserve(parallel_task_nums_);

    for (auto &iter : send_varname_to_ctx_) {
      auto &ctx = iter.second;
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;

      if (ctx.is_sparse) {
        PADDLE_ENFORCE_EQ(
1461 1462
            varnames.size(),
            1,
T
tangwei12 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        int pserver_num = static_cast<int>(ctx.epmap.size());
        for (int ep_idx = 0; ep_idx < pserver_num; ep_idx++) {
          // varname: emb@GRAD, param_name: emb, splited_varname: emb.delta0
          auto send_recv_task = [this, table_id, ep_idx, &ctx] {
            auto splited_varname = ctx.splited_varnames[ep_idx];
            auto sparse_ids = MergeSparseIds(splited_varname);
            SendSparse(splited_varname, sparse_ids, table_id, ep_idx);
            RecvSparse(splited_varname, table_id, ep_idx);
          };
          tasks.emplace_back(
              send_threadpool_->enqueue(std::move(send_recv_task)));
        }
      } else {
        auto send_recv_task = [this, &ctx] {
          SendDense(ctx);
          RecvDense(ctx);
        };
        tasks.emplace_back(
            send_threadpool_->enqueue(std::move(send_recv_task)));
      }
    }
    for (auto &task : tasks) {
      task.wait();
    }
  }
}

}  // namespace distributed
}  // namespace paddle