nn.py 555.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
28
from .. import dygraph_utils
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
36
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
37
import paddle
Y
Yu Yang 已提交
38 39

__all__ = [
X
Xin Pan 已提交
40 41 42 43 44 45 46 47 48 49 50
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
51 52
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
53
    'batch_norm',
K
Kaipeng Deng 已提交
54
    'inplace_abn',
L
lvmengsi 已提交
55
    'instance_norm',
H
heqiaozhi 已提交
56
    'data_norm',
X
Xin Pan 已提交
57 58 59 60 61 62 63
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
64 65
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
77
    'group_norm',
D
dengkaipeng 已提交
78
    'spectral_norm',
X
Xin Pan 已提交
79 80 81 82 83 84 85
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
86
    'lod_append',
X
Xin Pan 已提交
87 88 89 90 91
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
92
    'roi_align',
X
Xin Pan 已提交
93 94 95 96
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
97
    'resize_trilinear',
98
    'resize_nearest',
X
Xin Pan 已提交
99
    'gather',
100
    'gather_nd',
X
Xin Pan 已提交
101
    'scatter',
102 103
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
104 105 106
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
107
    'selu',
X
Xin Pan 已提交
108 109
    'log',
    'crop',
110
    'crop_tensor',
X
Xin Pan 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
125
    'unique',
126
    'unique_with_counts',
X
Xin Pan 已提交
127
    'expand',
128
    'expand_as',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
137 138
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
139 140 141 142 143 144
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
145
    'strided_slice',
X
Xin Pan 已提交
146
    'shape',
Z
zhoukunsheng 已提交
147
    'rank',
Z
zhoukunsheng 已提交
148
    'size',
X
Xin Pan 已提交
149 150 151 152 153 154 155 156 157
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
158
    'space_to_depth',
W
whs 已提交
159
    'affine_grid',
160
    'affine_channel',
B
barrierye 已提交
161
    'similarity_focus',
M
minqiyang 已提交
162
    'hash',
D
dengkaipeng 已提交
163
    'grid_sampler',
G
gmcather 已提交
164 165
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
166
    'bilinear_tensor_product',
C
chengduo 已提交
167 168
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
169
    'shuffle_channel',
170
    'temporal_shift',
S
sneaxiy 已提交
171
    'py_func',
172
    'psroi_pool',
173
    'prroi_pool',
R
ruri 已提交
174
    'pixel_shuffle',
175
    'fsp_matrix',
H
heqiaozhi 已提交
176
    'continuous_value_model',
Z
zhoukunsheng 已提交
177
    'where',
Z
zhoukunsheng 已提交
178
    'sign',
179
    'deformable_conv',
180
    'unfold',
C
cjt222 已提交
181
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
182
    'filter_by_instag',
183
    'shard_index',
H
huangjun12 已提交
184
    'hard_swish',
G
Guo Sheng 已提交
185
    'gather_tree',
186
    'uniform_random',
Y
Yu Yang 已提交
187 188 189
]


190 191 192 193 194 195 196 197
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
198
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
199

200 201
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
202 203


Y
Yu Yang 已提交
204 205 206 207 208 209
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
210
       name=None):
Y
Yu Yang 已提交
211
    """
212
    **Fully Connected Layer**
Y
Yu Yang 已提交
213

214 215 216
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
217
    which represents a fully connected weight matrix from each input unit to
218 219 220 221
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
222
    is not None, a bias variable will be created and added to the output.
223
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
224

225
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
226

227 228 229 230
    .. math::

        Out = Act({XW + b})

231
    When the input is a list of Tensor(or LoDTensor):
232 233 234

    .. math::

235
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
236 237 238

    In the above equation:

239 240 241
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
242
    * :math:`b`: The bias parameter created by this layer (if needed).
243
    * :math:`Act`: The activation function.
244
    * :math:`Out`: The output Tensor.
245 246 247

    .. code-block:: text

248 249 250 251 252 253 254 255 256 257 258 259 260 261
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
262 263 264 265 266 267 268 269 270 271 272 273 274
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
275
    Args:
276 277 278
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
279
        size(int): The number of output units in this layer, which also means the feature size of output
280 281
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
282
            two dimensions. If this happens, the multidimensional tensor will first be flattened
283 284
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
285
            dimensions will be flatten to form the first dimension of the final matrix (height of
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
301 302

    Raises:
303
        ValueError: If dimensions of the input Tensor is less than 2.
304 305 306 307

    Examples:
        .. code-block:: python

308
          import paddle.fluid as fluid
309
          # when input is single tensor
310
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
311
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
312 313

          # when input are multiple tensors
314 315
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
316
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
317
    """
C
caoying03 已提交
318
    helper = LayerHelper("fc", **locals())
319
    check_type(input, 'input', (list, tuple, Variable), 'fc')
320 321
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
322
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
323
    dtype = helper.input_dtype()
324
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
325
    mul_results = []
326 327
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
328 329
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
330 331 332
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
333

Y
Yu Yang 已提交
334
        w = helper.create_parameter(
335
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
336
        tmp = helper.create_variable_for_type_inference(dtype)
337
        helper.append_op(
338 339 340
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
341
            outputs={"Out": tmp},
M
mozga-intel 已提交
342 343
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
344 345 346 347
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
348
    else:
X
Xin Pan 已提交
349
        pre_bias = helper.create_variable_for_type_inference(dtype)
350
        helper.append_op(
351 352 353
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
354
            attrs={"use_mkldnn": False})
355 356 357 358
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
359 360


361 362 363
def embedding(input,
              size,
              is_sparse=False,
364
              is_distributed=False,
365 366 367
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
368
    """
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
422 423

    Args:
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
447
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
448 449 450
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
451

452
    Returns:
453
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
454

455 456
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
457

B
bdzhuxiaoning 已提交
458
          import paddle.fluid as fluid
459 460 461
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
462
          # example 1
463 464 465 466 467 468 469 470 471 472
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
473 474 475
    """

    helper = LayerHelper('embedding', **locals())
476 477
    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.layers.embedding')
478 479
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
480
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
481 482
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
483 484
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
485
    tmp = helper.create_variable_for_type_inference(dtype)
486 487
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
488 489 490 491 492
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
493 494 495
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
496
            'remote_prefetch': remote_prefetch,
497 498
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
499 500 501
    return tmp


502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
def _pull_sparse(input,
                 size,
                 table_id,
                 accessor_class,
                 name="embedding",
                 ctr_label_name="",
                 padding_id=0,
                 dtype='float32',
                 scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


def _pull_sparse_v2(input,
                    size,
                    table_id,
                    accessor_class,
                    name="embedding",
                    ctr_label_name="",
                    padding_id=0,
                    dtype='float32',
                    scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


H
hutuxian 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
692
@templatedoc()
693
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
694 695 696 697 698 699
    """
    Linear Chain CRF.

    ${comment}

    Args:
700
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
701
        label(${label_type}): ${label_comment}
702
        Length(${length_type}): ${length_comment}
703
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
704 705

    Returns:
D
dzhwinter 已提交
706 707
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
708
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
709

J
JesseyXujin 已提交
710 711 712
    Examples:
        .. code-block:: python

713 714 715 716 717 718 719
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
720 721
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
744 745 746
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
747 748 749 750 751 752
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
753
                     name='crfw',
754 755 756 757 758 759
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
760

761 762 763
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
764
            ll=np.array([[3],[3],[4],[2]])
765 766 767
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
768 769 770 771 772
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

773 774 775
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
776
            
Y
yuyang18 已提交
777
    """
Y
Yu Yang 已提交
778
    helper = LayerHelper('linear_chain_crf', **locals())
779
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
780 781 782 783
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
784 785 786 787 788 789 790 791
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
792 793 794 795 796 797
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
798
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
799 800
    helper.append_op(
        type='linear_chain_crf',
801
        inputs=this_inputs,
Y
Yu Yang 已提交
802 803 804 805 806 807 808 809 810 811
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
812
@templatedoc()
813
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
814 815
    """
    ${comment}
Y
yi.wu 已提交
816

W
wopeizl 已提交
817 818
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
819

Y
Yibing Liu 已提交
820 821 822
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
823

Y
Yibing Liu 已提交
824
        label(${label_type}, optional): ${label_comment}
825
        
Y
Yibing Liu 已提交
826
        length(${length_type}, optional): ${length_comment}
827

W
wopeizl 已提交
828 829
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
830

W
wopeizl 已提交
831 832
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
833

834
           import paddle.fluid as fluid
835 836 837

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
838 839
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
840 841 842
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
843
                     param_attr=fluid.ParamAttr(name="crfw"))
844
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
845
                     param_attr=fluid.ParamAttr(name="crfw"))
846 847 848

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
849 850 851
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
852 853 854 855 856 857 858
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
859 860 861 862 863
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
864 865 866
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
867 868
    helper.append_op(
        type='crf_decoding',
869
        inputs=inputs,
W
wopeizl 已提交
870
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
871

W
wopeizl 已提交
872
    return viterbi_path
Y
Yu Yang 已提交
873 874


Y
yi.wu 已提交
875
@templatedoc()
F
fengjiayi 已提交
876
def cos_sim(X, Y):
Y
Yu Yang 已提交
877
    """
Y
yi.wu 已提交
878 879 880
    ${comment}

    Args:
881 882
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
883

Y
yi.wu 已提交
884
    Returns:
L
lvmengsi 已提交
885
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
886 887 888 889

    Examples:
        .. code-block:: python

890
            import paddle.fluid as fluid
L
lvmengsi 已提交
891 892
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
893
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
894
    """
F
fengjiayi 已提交
895
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
896 897 898
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
899 900 901 902 903 904 905 906 907 908
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
909 910 911 912 913
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
914
            dropout_implementation="downgrade_in_infer"):
915 916 917 918 919
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
920
    training. The dropout operator randomly sets (according to the given dropout
921 922 923
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
924 925
    dropout op can be removed from the program to make the program more efficient.

926
    Args:
L
lvmengsi 已提交
927
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
928
        dropout_prob (float): Probability of setting units to zero.
929 930 931 932
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
933
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
934 935
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
936 937
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
938
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
939 940

                                           - train: out = input * mask
C
ceci3 已提交
941
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
942 943 944

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
945
                                        2. upscale_in_train, upscale the outcome at training time
946

H
haowang101779990 已提交
947 948
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
949

H
haowang101779990 已提交
950 951
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
952

M
minqiyang 已提交
953

954
    Returns:
L
lvmengsi 已提交
955
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
956 957

    Examples:
958

959 960
        .. code-block:: python

961
            import paddle.fluid as fluid
L
lvmengsi 已提交
962
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
963
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
964 965
    """

966 967 968 969 970 971 972 973 974 975 976 977 978
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
979 980 981 982 983 984 985 986 987 988
        if (seed is None or
                seed == 0) and default_main_program().random_seed != 0:
            seed = default_main_program().random_seed
        seed = seed if seed is not None else 0
        _is_test = not _dygraph_tracer()._train_mode
        out, mask = core.ops.dropout(x, 'dropout_prob', dropout_prob, 'is_test',
                                     _is_test, 'fix_seed', seed is not None,
                                     'seed', seed, 'dropout_implementation',
                                     dropout_implementation)
        return out
989

F
fengjiayi 已提交
990
    helper = LayerHelper('dropout', **locals())
991 992
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'dropout')
993

X
Xin Pan 已提交
994 995
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
996
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
997

998
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
999

1000 1001 1002 1003 1004
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1005
        attrs=attrs)
1006 1007 1008
    return out


Y
yi.wu 已提交
1009
@templatedoc()
Y
Yu Yang 已提交
1010 1011 1012 1013
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1014 1015
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1016
    """
G
Guo Sheng 已提交
1017 1018
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
1019

M
minqiyang 已提交
1020
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1021
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1022

G
Guo Sheng 已提交
1023 1024
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
1025 1026

    .. code-block:: python
1027

Y
yi.wu 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
1038
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
1039

G
Guo Sheng 已提交
1040 1041 1042
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1053

Y
yi.wu 已提交
1054 1055 1056 1057 1058 1059
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
1060 1061
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
1073 1074
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
1075

Y
yi.wu 已提交
1076
    Args:
G
Guo Sheng 已提交
1077 1078 1079 1080 1081 1082
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
T
tianshuo78520a 已提交
1083
            It should have the same shape, lod and data type as ``input`` .
G
Guo Sheng 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
1093

Y
yi.wu 已提交
1094
    Returns:
G
Guo Sheng 已提交
1095 1096 1097 1098
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
1099

Y
yi.wu 已提交
1100 1101 1102
    Examples:
        .. code-block:: python

1103 1104 1105 1106
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
1107 1108 1109
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
1110 1111 1112 1113
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1114
            crf = fluid.layers.linear_chain_crf(
1115
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1116
            crf_decode = fluid.layers.crf_decoding(
1117
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1118 1119 1120 1121 1122
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1123
    """
F
fengjiayi 已提交
1124
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1125 1126

    # prepare output
X
Xin Pan 已提交
1127 1128 1129 1130 1131 1132 1133
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1134

1135 1136 1137 1138 1139
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1140 1141
    helper.append_op(
        type="chunk_eval",
1142
        inputs=this_input,
Y
Yu Yang 已提交
1143 1144 1145
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1146 1147 1148 1149
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1150 1151 1152
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1153 1154
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1155
        })
1156 1157
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1158 1159


1160
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1161
    """
1162
    This operator implements the softmax layer. The calculation process is as follows:
1163

1164
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1165
    
1166 1167 1168 1169 1170 1171 1172
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1173

1174 1175
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1176

1177 1178 1179 1180 1181
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1182

1183
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1184

1185
    .. math::
1186

1187
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1188

1189
    Example:
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1236
    Args:
1237 1238
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
T
tianshuo78520a 已提交
1239
            library is installed. To improve numerical stability, set use_cudnn to \
1240 1241
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1242
            will be named automatically. Default: None.
1243
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1244
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1245
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1246 1247

    Returns:
1248
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1249 1250 1251 1252 1253

    Examples:

        .. code-block:: python

1254 1255
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1266
    """
1267 1268

    if in_dygraph_mode():
1269 1270 1271 1272
        return core.ops.softmax(input, 'axis', axis, 'use_cudnn', use_cudnn)

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1273

1274
    helper = LayerHelper('softmax', **locals())
1275 1276
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'softmax')
1277

1278
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1279
    softmax_out = helper.create_variable_for_type_inference(dtype)
1280 1281 1282 1283
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
1284
        attrs=attrs)
1285 1286 1287
    return softmax_out


Y
Yu Yang 已提交
1288 1289 1290
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1291 1292
           stride=1,
           padding=0,
1293
           dilation=1,
Y
Yu Yang 已提交
1294 1295 1296
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1297
           use_cudnn=True,
1298
           act=None,
L
liym27 已提交
1299 1300
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1301
    """
C
chengduoZH 已提交
1302
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1303
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1304
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1305
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1306 1307 1308 1309 1310 1311
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1312
    for more details.
1313 1314 1315
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1316

1317
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1318

C
chengduoZH 已提交
1319 1320
    .. math::

C
refine  
chengduoZH 已提交
1321
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1322

T
tensor-tang 已提交
1323
    Where:
C
chengduoZH 已提交
1324

L
liym27 已提交
1325
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1326 1327 1328 1329
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1330
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1331 1332 1333

    Example:

1334 1335
        - Input:

W
weixing02 已提交
1336
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1337

W
weixing02 已提交
1338
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1339

1340
        - Output:
T
tensor-tang 已提交
1341

W
weixing02 已提交
1342
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1343

C
chengduoZH 已提交
1344
        Where
1345 1346

        .. math::
C
chengduoZH 已提交
1347

W
weixing02 已提交
1348 1349
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1350 1351

    Args:
L
lvmengsi 已提交
1352 1353
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1354
        num_filters(int): The number of filter. It is as same as the output
1355
            image channel.
1356 1357
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1358 1359 1360 1361 1362 1363
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1364
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1365 1366
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1367 1368 1369
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1370 1371 1372
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1373 1374 1375 1376
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1377 1378 1379 1380
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1381 1382 1383 1384 1385
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1386
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1387 1388 1389 1390 1391
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1392 1393
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1394 1395
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1396 1397 1398
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1399 1400
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1401 1402
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1403 1404

    Returns:
L
lvmengsi 已提交
1405 1406 1407 1408
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1423 1424 1425
    Examples:
        .. code-block:: python

1426
          import paddle.fluid as fluid
L
lvmengsi 已提交
1427
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1428
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1429 1430
    """

1431 1432
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'conv2d')
1433
    num_channels = input.shape[1]
L
liym27 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1449
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1450

1451
    l_type = 'conv2d'
X
xzl 已提交
1452 1453
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1454
        l_type = 'depthwise_conv2d'
1455 1456 1457 1458

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1459 1460 1461 1462
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1463
            raise ValueError(
1464 1465 1466
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1467
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1468

C
chengduoZH 已提交
1469 1470
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1471
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1472

L
liym27 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1496 1497 1498
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1513
            padding = [0, 0]
L
liym27 已提交
1514 1515
        elif padding == "SAME":
            padding_algorithm = "SAME"
1516
            padding = [0, 0]
L
liym27 已提交
1517 1518

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1519

M
minqiyang 已提交
1520
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1521 1522

    def _get_default_param_initializer():
C
chengduo 已提交
1523 1524
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1525 1526 1527 1528 1529 1530 1531 1532
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1533
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1534 1535

    helper.append_op(
1536
        type=l_type,
Y
Yu Yang 已提交
1537 1538 1539 1540 1541
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1542 1543 1544
        attrs={
            'strides': stride,
            'paddings': padding,
1545
            'dilations': dilation,
C
chengduoZH 已提交
1546
            'groups': groups,
1547
            'use_cudnn': use_cudnn,
1548
            'use_mkldnn': False,
L
liym27 已提交
1549 1550 1551
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1552
        })
Y
Yu Yang 已提交
1553

1554 1555 1556 1557
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1558 1559 1560 1561

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1573 1574
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1575 1576 1577
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1578
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1579 1580 1581 1582 1583
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1593
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1594
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1595 1596 1597
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1598
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1620 1621
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1622
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1623
            image channel.
1624 1625 1626 1627
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1628 1629 1630 1631
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
T
tianshuo78520a 已提交
1632
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1633 1634 1635 1636 1637 1638 1639 1640
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1641 1642 1643 1644
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1645 1646 1647 1648 1649
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1660 1661
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1662 1663
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1664 1665 1666
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1667 1668 1669 1670
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1671 1672

    Returns:
L
lvmengsi 已提交
1673 1674 1675 1676
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1691 1692 1693
    Examples:
        .. code-block:: python

1694
          import paddle.fluid as fluid
L
lvmengsi 已提交
1695
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1696
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1697 1698 1699
    """

    l_type = 'conv3d'
C
chengduo 已提交
1700
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1701 1702 1703
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1719 1720 1721 1722 1723

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1724 1725 1726 1727
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1728
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1729 1730 1731 1732 1733

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1756 1757
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1758 1759
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1760 1761
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1776
            padding = [0, 0, 0]
L
liym27 已提交
1777 1778
        elif padding == "SAME":
            padding_algorithm = "SAME"
1779
            padding = [0, 0, 0]
L
liym27 已提交
1780 1781

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1782 1783 1784 1785 1786

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1787 1788 1789
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1790 1791 1792 1793 1794 1795 1796 1797
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1798
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1813 1814 1815
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1816 1817
        })

1818 1819 1820 1821
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1822 1823 1824 1825

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1826
@templatedoc()
Y
Yu Yang 已提交
1827
def pool2d(input,
C
chengduoZH 已提交
1828 1829
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1830 1831
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1832
           global_pooling=False,
C
chengduoZH 已提交
1833
           use_cudnn=True,
1834
           ceil_mode=False,
1835
           name=None,
1836 1837
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1838
    """
F
fengjiayi 已提交
1839
    ${comment}
1840 1841

    Args:
K
Kaipeng Deng 已提交
1842 1843 1844 1845 1846
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1847
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1848 1849
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1850
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1851 1852 1853
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1854 1855 1856 1857 1858 1859 1860
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1861
            Otherwise, the pool padding size will be a square of an int.
1862 1863 1864
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1865 1866 1867
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1868
        exclusive (bool): Whether to exclude padding points in average pooling
1869 1870 1871 1872
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1873

1874
    Returns:
K
Kaipeng Deng 已提交
1875
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1876 1877

    Raises:
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1890 1891 1892 1893 1894

    Examples:

        .. code-block:: python

1895
          import paddle.fluid as fluid
1896

K
Kaipeng Deng 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1940 1941 1942
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1943
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1944
            str(pool_type))
C
chengduoZH 已提交
1945

C
chengduoZH 已提交
1946 1947
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1948 1949 1950 1951
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1952 1953
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1954 1955 1956 1957 1958

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1959

C
chengduoZH 已提交
1960 1961 1962
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1985

1986 1987
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2002
            pool_padding = [0, 0]
2003 2004 2005 2006 2007 2008
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2009
            pool_padding = [0, 0]
2010 2011 2012 2013 2014

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2015
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2016
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2017 2018

    helper.append_op(
2019
        type=op_type,
2020 2021 2022 2023 2024 2025 2026 2027
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
2028
            "padding_algorithm": padding_algorithm,
2029 2030
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2031 2032
            "use_mkldnn": False,
            "exclusive": exclusive,
2033
            "data_format": data_format,
2034 2035 2036 2037 2038
        })

    return pool_out


D
dengkaipeng 已提交
2039
@templatedoc()
2040 2041 2042 2043 2044 2045 2046 2047
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2048
           name=None,
2049 2050
           exclusive=True,
           data_format="NCDHW"):
2051
    """
2052
    ${comment}
2053 2054

    Args:
K
Kaipeng Deng 已提交
2055 2056
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
2057 2058 2059
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
2060
                          of the feature.
D
dengkaipeng 已提交
2061 2062 2063 2064 2065
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
2077 2078 2079
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
2080 2081 2082
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2083
        exclusive (bool): Whether to exclude padding points in average pooling
2084 2085 2086 2087
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
2088

2089
    Returns:
K
Kaipeng Deng 已提交
2090
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
2105 2106 2107 2108
    Examples:

        .. code-block:: python

2109
          import paddle.fluid as fluid
2110

K
Kaipeng Deng 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2159 2160 2161
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2162
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2163
            str(pool_type))
C
chengduoZH 已提交
2164

C
chengduoZH 已提交
2165 2166
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2167 2168 2169 2170 2171
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2172 2173
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2174 2175 2176 2177 2178

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2179

2180 2181
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2182

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2205 2206
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2207 2208 2209

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2210 2211
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2226
            pool_padding = [0, 0, 0]
2227 2228 2229 2230 2231 2232
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2233
            pool_padding = [0, 0, 0]
2234 2235 2236 2237 2238

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2239
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2240
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2241 2242

    helper.append_op(
2243
        type=op_type,
Y
Yu Yang 已提交
2244 2245 2246 2247 2248 2249 2250
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2251
            "paddings": pool_padding,
2252
            "padding_algorithm": padding_algorithm,
2253
            "use_cudnn": use_cudnn,
2254
            "ceil_mode": ceil_mode,
2255 2256
            "use_mkldnn": False,
            "exclusive": exclusive,
2257
            "data_format": data_format,
Y
Yu Yang 已提交
2258 2259 2260 2261 2262
        })

    return pool_out


2263 2264 2265 2266 2267 2268 2269
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2270
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2271 2272 2273 2274
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2275
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2276

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2290 2291

    Args:
K
Kaipeng Deng 已提交
2292 2293 2294 2295 2296
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2297 2298 2299
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2300
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2301 2302 2303 2304
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2305 2306

    Returns:
K
Kaipeng Deng 已提交
2307 2308
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2309 2310 2311 2312 2313 2314 2315 2316 2317

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2318
          # average adaptive pool2d
M
minqiyang 已提交
2319
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2320
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
M
minqiyang 已提交
2321
          # of input data into m * n grids averagely and performs poolings in each
2322 2323
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2324
          #
2325 2326 2327 2328 2329 2330 2331 2332
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2333
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2334
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2335
          pool_out = fluid.layers.adaptive_pool2d(
2336 2337
                            input=data,
                            pool_size=[3, 3],
2338
                            pool_type='avg')
K
Kaipeng Deng 已提交
2339 2340 2341

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2342
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
K
Kaipeng Deng 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2371
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2397
    return (pool_out, mask) if require_index else pool_out
2398 2399 2400 2401 2402 2403 2404 2405 2406


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2407
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2408 2409 2410 2411
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2412 2413
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2414

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2432 2433

    Args:
K
Kaipeng Deng 已提交
2434 2435 2436
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2437
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2438
                          The data type is float32 or float64.
2439
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2440
            it must contain three integers, (Depth, Height, Width).
2441
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2442
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2443 2444 2445 2446
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2447 2448

    Returns:
K
Kaipeng Deng 已提交
2449
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2450 2451 2452 2453 2454 2455 2456 2457 2458

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2459
          # average adaptive pool3d
2460
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2461
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
M
minqiyang 已提交
2462
          # of input data into l * m * n grids averagely and performs poolings in each
2463 2464
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2465
          #
2466 2467 2468 2469 2470 2471 2472 2473 2474
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2475
          #                 output[:, :, i, j, k] =
2476 2477
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2478 2479 2480

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2481 2482
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2483
          pool_out = fluid.layers.adaptive_pool3d(
2484
                            input=data,
D
dengkaipeng 已提交
2485
                            pool_size=[3, 3, 3],
2486
                            pool_type='avg')
K
Kaipeng Deng 已提交
2487 2488 2489

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2490
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
K
Kaipeng Deng 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2526
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2552
    return (pool_out, mask) if require_index else pool_out
2553 2554


Y
Yu Yang 已提交
2555 2556 2557 2558 2559 2560 2561
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2562
               data_layout='NCHW',
Y
Yang Yang 已提交
2563
               in_place=False,
2564 2565
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2566
               moving_variance_name=None,
2567
               do_model_average_for_mean_and_var=True,
2568
               use_global_stats=False):
Y
Yu Yang 已提交
2569
    """
Q
qiaolongfei 已提交
2570 2571
    **Batch Normalization Layer**

L
lvmengsi 已提交
2572
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2573
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2574

Q
qiaolongfei 已提交
2575
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2576

Q
qiaolongfei 已提交
2577 2578
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2579 2580 2581
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2594

L
lvmengsi 已提交
2595 2596 2597
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2598

L
lvmengsi 已提交
2599
    moving_mean is global mean and moving_var is global variance.
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2613 2614 2615
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
2616
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2617

2618
    Args:
2619
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2620
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2621
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2622 2623
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2624 2625 2626
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2627 2628 2629 2630 2631
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2632 2633
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2634 2635 2636
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2637 2638
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2639 2640 2641
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2642
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
K
Kaipeng Deng 已提交
2643 2644 2645
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
2646
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2647 2648 2649
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2650 2651
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2652
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2653 2654
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2655 2656
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2657 2658 2659 2660 2661
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2662
    Returns:
L
lvmengsi 已提交
2663 2664
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2665 2666 2667 2668 2669

    Examples:

        .. code-block:: python

2670
            import paddle.fluid as fluid
L
lvmengsi 已提交
2671
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2672 2673
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2701
    """
C
chengduo 已提交
2702
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2703 2704
    helper = LayerHelper('batch_norm', **locals())

2705 2706
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'batch_norm')
2707
    dtype = helper.input_dtype()
2708 2709 2710 2711 2712 2713 2714

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2715 2716 2717 2718
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2737
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2738

2739 2740
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2741 2742 2743
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2744
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2745
        shape=param_shape,
W
Wu Yi 已提交
2746
        dtype=dtype)
2747 2748 2749 2750 2751 2752
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2753
            trainable=False,
W
wanghaoshuang 已提交
2754
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2755
        shape=param_shape,
W
Wu Yi 已提交
2756
        dtype=dtype)
2757
    variance.stop_gradient = True
Y
Yu Yang 已提交
2758 2759 2760 2761 2762 2763

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2764 2765 2766 2767
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2768

2769 2770 2771 2772 2773
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

K
Kaipeng Deng 已提交
2774 2775
    batch_norm_out = input if in_place else \
            helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2776

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2807
    helper.append_op(
2808
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2809 2810 2811 2812

    return helper.append_activation(batch_norm_out)


K
Kaipeng Deng 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
def inplace_abn(input,
                act=None,
                is_test=False,
                momentum=0.9,
                epsilon=1e-05,
                param_attr=None,
                bias_attr=None,
                data_layout='NCHW',
                name=None,
                moving_mean_name=None,
                moving_variance_name=None,
                do_model_average_for_mean_and_var=True,
                use_global_stats=False,
                act_alpha=1.0):
    """
    **In-place Activation Batch Normalization Layer**
    
    This layer calculates batch normalization and activation with in-place memory.
    For batch normalization calculations, see `fluid.layers.batch_norm`.
    For in-place activation batch normalization, see `In-Place Activated BatchNorm for 
    Memory-Optimized Training of DNNs <https://arxiv.org/abs/1712.02616>`_

    `inplace_abn` only support activation type as `None`, `identity`, `leaky_relu`,
    `elu` currently.
    `inplace_abn` only support data type as `float32`, `float64` currently.

    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.

    Args:
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
            is float16 or float32 or float64.
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of inplace_abn. If it is set to None or one attribute of ParamAttr, inplace_abn 
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of inplace_abn.
             If it is set to None or one attribute of ParamAttr, inplace_abn 
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, inplace_abn will save global mean with a random name, otherwise, inplace_abn 
            will save global mean with the string.
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
            If it is set to None, inplace_abn, will save global variance with a random name, otherwise, inplace_abn 
            will save global variance with the string.
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
        act_alpha(float, Default 1.0): when activation is in ['elu', 'identity', 'leaky_relu'],
            inplace activative batch normalization will be used, and alpha parameter for activation
            can be given by this parameter.
    Returns:
        A Variable holding Tensor which is the result after applying batch normalization and activation on the input, 
        has same shape and data type with input. 

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.inplace_abn(input=hidden1)
            hidden3 = fluid.layers.inplace_abn(input=hidden2, act='leaky_relu', act_alpha=0.2)

    """
    assert act in [None, 'identity', 'leaky_relu', 'elu'], \
        "inplace_abn only support act as None, 'identity', " \
        "'leaky_relu', 'elu' currently"
    assert bias_attr is not False, "bias_attr should not be False in inplace_abn."
    helper = LayerHelper('inplace_abn', **locals())

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'inplace_abn')
    dtype = helper.input_dtype()

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
        shape=param_shape,
        dtype=dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
        shape=param_shape,
        dtype=dtype)
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

    batch_norm_out = input

    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats,
        "activation": act,
        "alpha": act_alpha,
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

    helper.append_op(
        type="inplace_abn", inputs=inputs, outputs=outputs, attrs=attrs)

    return batch_norm_out


L
lvmengsi 已提交
3016 3017 3018 3019 3020 3021 3022 3023
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
3024
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
3038
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
3039
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
3040
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
3041 3042 3043 3044
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
3045 3046
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
3047 3048

    Args:
L
lvmengsi 已提交
3049 3050
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
3067 3068
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
3069 3070 3071 3072 3073 3074

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
3075
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
3139
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
3140 3141 3142
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
3143 3144 3145
    """
    **Data Normalization Layer**

3146
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
3170 3171 3172 3173
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
3174 3175 3176 3177 3178
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3179 3180
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
3181 3182 3183 3184 3185 3186 3187
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
3188 3189 3190
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
3191 3192 3193 3194 3195 3196 3197

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3198 3199
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3200

3201
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
3202
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
3279 3280 3281 3282

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3283
@templatedoc()
G
guosheng 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
3294 3295 3296 3297
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
3298 3299 3300

    The formula is as follows:

Y
yuyang18 已提交
3301
    ..  math::
G
guosheng 已提交
3302

3303
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
3304

3305
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
3306

3307
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
3308

3309 3310 3311 3312 3313
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3314

G
guosheng 已提交
3315
    Args:
3316 3317 3318 3319 3320 3321
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
3322
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
3323 3324 3325 3326
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3327 3328
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3329
            a default :code:`ParamAttr` would be added as scale. The
3330 3331
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3332 3333
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3334
            a default :code:`ParamAttr` would be added as bias. The
3335
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
3336
        act(str, optional): Activation to be applied to the output of layer normalization.
3337 3338
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
3339 3340

    Returns:
3341
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
3342 3343 3344

    Examples:

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3357
    """
L
lujun 已提交
3358
    assert in_dygraph_mode(
3359
    ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
3360 3361 3362 3363 3364 3365 3366 3367
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3368
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3369 3370 3371 3372 3373 3374
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3375 3376
    else:
        if param_attr:
T
tianshuo78520a 已提交
3377
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
3378
    if shift:
3379
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3380 3381 3382
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3383 3384
    else:
        if bias_attr:
T
tianshuo78520a 已提交
3385
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
3386 3387

    # create output
X
Xin Pan 已提交
3388 3389 3390 3391 3392
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3420
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3421

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
3436
        act(str, optional): Activation to be applied to the output of group normalization.
3437 3438 3439 3440
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3441 3442
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3443 3444

    Returns:
3445 3446 3447 3448
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3449 3450 3451 3452 3453 3454
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3455 3456

    Examples:
3457
       .. code-block:: python
D
Dun 已提交
3458

3459 3460 3461
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3462 3463 3464 3465 3466 3467 3468
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3469 3470 3471 3472 3473 3474
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3488 3489
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3500 3501 3502 3503 3504
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3505 3506 3507 3508 3509

    return helper.append_activation(group_norm_out)


@templatedoc()
3510
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3511 3512 3513
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3514
    This operation calculates the spectral normalization value of weight parameters of
3515
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3516 3517
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3518

D
dengkaipeng 已提交
3519 3520 3521
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3522
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3523 3524

    Step 2:
T
tianshuo78520a 已提交
3525
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3526 3527
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3528 3529 3530 3531 3532 3533 3534 3535

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3536
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3537 3538 3539 3540

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3541

D
dengkaipeng 已提交
3542
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3543 3544
                

D
dengkaipeng 已提交
3545 3546 3547 3548
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3549 3550 3551
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3552 3553 3554
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3555 3556

    Returns:
D
dengkaipeng 已提交
3557
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3558
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3559 3560

    Examples:
K
Kaipeng Deng 已提交
3561
       .. code-block:: python
D
dengkaipeng 已提交
3562

K
Kaipeng Deng 已提交
3563 3564
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3565
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3566
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3567 3568
    """
    helper = LayerHelper('spectral_norm', **locals())
3569
    dtype = weight.dtype
D
dengkaipeng 已提交
3570 3571 3572

    # create intput and parameters
    inputs = {'Weight': weight}
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3591 3592

    # create output
3593
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3594 3595

    helper.append_op(
3596
        type="spectral_norm",
D
Dun 已提交
3597
        inputs=inputs,
3598 3599 3600 3601 3602 3603
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3604

3605
    return out
D
Dun 已提交
3606 3607


Y
Yu Yang 已提交
3608 3609 3610 3611
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3612 3613 3614
                     padding=0,
                     stride=1,
                     dilation=1,
3615
                     groups=None,
C
caoying03 已提交
3616
                     param_attr=None,
3617
                     bias_attr=None,
C
chengduoZH 已提交
3618
                     use_cudnn=True,
3619
                     act=None,
3620 3621
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3622
    """
3623 3624
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3625
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3626 3627 3628
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3629
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3630
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3631 3632 3633
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3634 3635 3636 3637 3638

    For each input :math:`X`, the equation is:

    .. math::

3639
        Out = \sigma (W \\ast X + b)
3640

3641
    Where:
3642

3643 3644
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3645
    * :math:`\\ast`: Convolution operation.
3646
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3647
    * :math:`\\sigma`: Activation function.
3648
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3649

3650 3651 3652 3653
    Example:

        - Input:

3654
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3655

3656
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3657 3658 3659

        - Output:

3660
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3661 3662

        Where
Y
Yu Yang 已提交
3663

3664 3665
        .. math::

3666 3667
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3668
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3669 3670
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3671
    Note:
L
lvmengsi 已提交
3672 3673 3674 3675
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3676 3677 3678 3679
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3680 3681

    Args:
3682 3683
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3684 3685
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3686
        output_size(int|tuple, optional): The output image size. If output size is a
3687
            tuple, it must contain two integers, (image_height, image_width). None if use
3688
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3689 3690 3691
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3692
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3693 3694
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3695 3696 3697 3698 3699 3700 3701
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3702 3703 3704 3705 3706 3707 3708 3709 3710
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3711 3712 3713 3714 3715 3716 3717
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3718
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3719 3720 3721 3722
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3723
            Default: groups = 1.
3724
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3725 3726 3727
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3728
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3729 3730 3731 3732
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3733
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3734
            library is installed. Default: True.
3735
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3736
            Default: None.
L
lvmengsi 已提交
3737 3738 3739
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3740 3741 3742 3743
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3744 3745

    Returns:
L
lvmengsi 已提交
3746 3747 3748 3749 3750 3751
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3752 3753

    Raises:
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3765 3766 3767 3768

    Examples:
       .. code-block:: python

3769
          import paddle.fluid as fluid
L
lvmengsi 已提交
3770
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3771
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3772
    """
C
chengduo 已提交
3773
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3774 3775 3776 3777
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3778

3779
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3780 3781 3782 3783 3784 3785
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3786 3787 3788
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3789 3790
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3791

C
chengduoZH 已提交
3792 3793
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3794

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3838 3839 3840 3841 3842
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3843

3844 3845
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3846

3847 3848 3849 3850
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3851
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3852 3853 3854
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3855

3856 3857 3858
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3859 3860
    if output_size is None:
        output_size = []
3861
    elif isinstance(output_size, (list, tuple, int)):
3862 3863
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
3864
        raise ValueError("output_size should be int, list[int] or tuple[int]")
3865
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3866
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3867

Y
Yu Yang 已提交
3868 3869 3870
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3871
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3872
    helper.append_op(
3873
        type=op_type,
Y
Yu Yang 已提交
3874 3875
        inputs={'Input': [input],
                'Filter': [img_filter]},
3876
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3877
        attrs={
3878
            'output_size': output_size,
3879 3880
            'strides': stride,
            'paddings': padding,
3881
            'padding_algorithm': padding_algorithm,
3882 3883
            'dilations': dilation,
            'groups': groups,
3884 3885
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3886 3887
        })

3888 3889 3890 3891
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3892 3893
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3894 3895


3896
def conv3d_transpose(input,
Y
Yu Yang 已提交
3897 3898 3899
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3900 3901 3902
                     padding=0,
                     stride=1,
                     dilation=1,
3903
                     groups=None,
C
caoying03 已提交
3904
                     param_attr=None,
3905
                     bias_attr=None,
C
chengduoZH 已提交
3906
                     use_cudnn=True,
3907
                     act=None,
3908 3909
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3910
    """
3911
    The convolution3D transpose layer calculates the output based on the input,
3912
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3913
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3914 3915 3916 3917
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3918
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3919 3920 3921
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3922 3923 3924 3925 3926

    For each input :math:`X`, the equation is:

    .. math::

3927
        Out = \sigma (W \\ast X + b)
3928 3929 3930

    In the above equation:

3931 3932
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3933
    * :math:`\\ast`: Convolution operation.
3934
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3935 3936
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3937

3938 3939 3940 3941
    Example:

        - Input:

3942
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3943

3944
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3945 3946 3947

        - Output:

3948
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3949 3950

        Where
Y
Yu Yang 已提交
3951

3952 3953
        .. math::

L
lvmengsi 已提交
3954 3955 3956 3957 3958 3959
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3960

L
lvmengsi 已提交
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3976 3977
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3978
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3979 3980 3981 3982
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
3983
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
3984
            it must contain three integers, (filter_size_depth, filter_size_height,
3985 3986
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
3987 3988 3989 3990
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
3991 3992 3993 3994 3995 3996 3997 3998
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3999 4000 4001 4002 4003 4004 4005 4006
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
4007
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
4008 4009 4010 4011 4012
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
4013
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
4014 4015 4016
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
4017
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
4018 4019 4020 4021
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4022
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
4023
            library is installed. Default: True
4024
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
4025
            Default: None.
L
lvmengsi 已提交
4026 4027 4028
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
4029 4030 4031 4032
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
4033 4034

    Returns:
L
lvmengsi 已提交
4035 4036 4037 4038 4039
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
4040 4041

    Raises:
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
4053 4054 4055 4056

    Examples:
       .. code-block:: python

4057
          import paddle.fluid as fluid
L
lvmengsi 已提交
4058
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
4059
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4060
    """
C
chengduo 已提交
4061
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4062 4063 4064 4065
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
4066 4067
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4068
    if not isinstance(input, Variable):
4069
        raise TypeError("Input of conv3d_transpose must be Variable")
4070 4071
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
4072

4073 4074
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4075

C
chengduoZH 已提交
4076 4077 4078
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
4093 4094 4095 4096 4097 4098 4099 4100
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
4101

4102 4103
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
4104

4105 4106 4107 4108 4109 4110 4111
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
4112

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
4126

4127
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
4128

4129 4130 4131 4132
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
4133
            output_size = [output_size, output_size, output_size]
Y
yangyaming 已提交
4134

4135 4136 4137
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
4138

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
4149

4150 4151
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
4152

4153 4154 4155 4156 4157 4158 4159
    if output_size is None:
        output_size = []
    elif isinstance(output_size, (list, tuple, int)):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
        raise ValueError("output_size should be int, list[int] or tuple[int]")

4160 4161 4162 4163
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
4164

4165 4166 4167 4168
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
4169

4170
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
4171
    helper.append_op(
4172 4173 4174 4175 4176
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
4177
            'output_size': output_size,
4178 4179 4180 4181 4182 4183 4184 4185
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
4186

4187 4188 4189 4190 4191 4192
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
4193 4194


C
caoying03 已提交
4195
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4196
    """
Y
yangyaming 已提交
4197
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4198 4199

    Args:
4200 4201 4202
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4203 4204
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4205 4206
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4207
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4208
            output Tensor. The result tensor will have one fewer dimension
4209 4210 4211 4212
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
4213 4214

    Returns:
4215 4216
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
4217

4218 4219 4220
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4221 4222 4223
    Examples:
        .. code-block:: python

4224
            import paddle.fluid as fluid
G
guosheng 已提交
4225 4226 4227
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4228
            # Each example is followed by the corresponding output tensor.
4229
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4230 4231 4232 4233
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4234

4235
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4236 4237
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4238
            # Each example is followed by the corresponding output tensor.
4239
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4240 4241
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4242

G
guosheng 已提交
4243
    """
4244 4245
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4246 4247 4248 4249 4250 4251

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
4252
    attrs = {
4253
        'dim': dim if dim != None and dim != [] else [0],
4254
        'keep_dim': keep_dim,
4255
        'reduce_all': True if dim == None or dim == [] else False
4256
    }
4257 4258
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
4259
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4260
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4261 4262 4263 4264
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
4265
        attrs=attrs)
G
guosheng 已提交
4266
    return out
G
guosheng 已提交
4267 4268


C
caoying03 已提交
4269
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4270
    """
Y
Yibing Liu 已提交
4271
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4272 4273

    Args:
4274 4275 4276
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
4277 4278
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4279
            must be in the range :math:`[-rank(input), rank(input))`. If
4280
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4281
            :math:`rank(input) + dim[i]`.
4282
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4283
            output Tensor. The result tensor will have one fewer dimension
4284 4285 4286 4287 4288
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
4289
    Returns:
4290 4291 4292 4293 4294 4295
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4296 4297 4298
    Examples:
        .. code-block:: python

4299
            import paddle.fluid as fluid
G
guosheng 已提交
4300 4301 4302
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4303
            # Each example is followed by the corresponding output tensor.
4304
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4305 4306 4307
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4308
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4309

4310
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4311 4312
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4313
            # Each example is followed by the corresponding output tensor.
4314
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4315 4316
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4317
    """
4318 4319 4320

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4321 4322 4323 4324 4325 4326

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_mean(input, 'dim', dim, 'keep_dim', keep_dim,
                                    'reduce_all', reduce_all)
4327
    attrs = {
4328
        'dim': dim if dim != None and dim != [] else [0],
4329
        'keep_dim': keep_dim,
4330
        'reduce_all': True if dim == None or dim == [] else False
4331
    }
4332 4333
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_mean')
4334
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4335
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4336 4337 4338 4339
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
4340
        attrs=attrs)
G
guosheng 已提交
4341
    return out
4342 4343


C
caoying03 已提交
4344
def reduce_max(input, dim=None, keep_dim=False, name=None):
4345
    """
Y
yangyaming 已提交
4346
    Computes the maximum of tensor elements over the given dimension.
4347 4348

    Args:
4349 4350 4351
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4352 4353 4354
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4355
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4356
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4357
            output Tensor. The result tensor will have one fewer dimension
4358 4359 4360 4361
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4362 4363

    Returns:
4364 4365
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4366

4367 4368 4369
    Examples:
        .. code-block:: python

4370
            import paddle.fluid as fluid
4371 4372 4373
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4374
            # Each example is followed by the corresponding output tensor.
4375
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4376 4377 4378 4379
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4380

4381
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4382 4383
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4384
            # Each example is followed by the corresponding output tensor.
4385
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4386 4387
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4388 4389
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4390
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4391 4392
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4393 4394 4395 4396 4397
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4398
            'dim': dim if dim != None and dim != [] else [0],
4399
            'keep_dim': keep_dim,
4400
            'reduce_all': True if dim == None or dim == [] else False
4401 4402 4403 4404
        })
    return out


C
caoying03 已提交
4405
def reduce_min(input, dim=None, keep_dim=False, name=None):
4406
    """
Y
yangyaming 已提交
4407
    Computes the minimum of tensor elements over the given dimension.
4408 4409

    Args:
4410 4411 4412
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4413 4414 4415
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4416
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4417
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4418
            output Tensor. The result tensor will have one fewer dimension
4419 4420 4421 4422
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4423 4424

    Returns:
4425 4426
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4427

4428 4429 4430
    Examples:
        .. code-block:: python

4431
            import paddle.fluid as fluid
4432 4433 4434
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4435
            # Each example is followed by the corresponding output tensor.
4436
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4437 4438 4439 4440
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4441

4442
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4443 4444
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4445
            # Each example is followed by the corresponding output tensor.
4446
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4447 4448
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4449 4450
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4451
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4452 4453
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4454 4455 4456 4457 4458
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4459
            'dim': dim if dim != None and dim != [] else [0],
4460
            'keep_dim': keep_dim,
4461
            'reduce_all': True if dim == None or dim == [] else False
4462 4463
        })
    return out
G
guosheng 已提交
4464 4465


4466 4467 4468 4469 4470
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4471 4472 4473
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
T
tianshuo78520a 已提交
4474
            :attr:`None`, multiply all elements of :attr:`input` and return a
4475
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4476 4477
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4478
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4479
            output Tensor. The result tensor will have one fewer dimension
4480 4481 4482 4483
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4484 4485

    Returns:
4486 4487 4488
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4489 4490 4491
    Examples:
        .. code-block:: python

4492
            import paddle.fluid as fluid
4493 4494 4495
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4496
            # Each example is followed by the corresponding output tensor.
4497
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4498 4499 4500
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4501
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4502
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4503

4504
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4505 4506
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4507
            # Each example is followed by the corresponding output tensor.
4508
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4509 4510
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4511 4512
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4513
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4514 4515
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4516 4517 4518 4519 4520
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4521
            'dim': dim if dim != None and dim != [] else [0],
4522
            'keep_dim': keep_dim,
4523
            'reduce_all': True if dim == None or dim == [] else False
4524 4525 4526 4527
        })
    return out


Z
zhoukunsheng 已提交
4528 4529
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4530
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4531 4532

    Args:
4533 4534
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4535 4536 4537
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4538
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4539 4540
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4541
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4542
        name(str|None): A name for this layer(optional). If set None, the layer
4543
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4544

4545 4546
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4547 4548 4549

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4550
        
4551
            import paddle.fluid as fluid
4552 4553 4554
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4555 4556 4557
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4558 4559 4560 4561 4562 4563
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4564 4565
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4566
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4567
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4579
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4580
            'keep_dim': keep_dim,
4581
            'reduce_all': True if dim == None or dim == [] else False
Z
zhoukunsheng 已提交
4582 4583 4584 4585 4586 4587
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4588
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4589 4590

    Args:
4591 4592 4593
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4594 4595
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4596
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4597 4598
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4599
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4600 4601
        name(str|None): A name for this layer(optional). If set None, the layer

4602 4603
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4604 4605 4606

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4607

4608
            import paddle.fluid as fluid
4609 4610 4611
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4612 4613 4614
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4615 4616 4617 4618 4619 4620
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4621 4622
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4623
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4624
                                     keep_dim=True)  # [[True], [False]]
4625
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4637
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4638
            'keep_dim': keep_dim,
4639
            'reduce_all': True if dim == None or dim == [] else False
4640 4641 4642 4643
        })
    return out


C
caoying03 已提交
4644
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4645
    """
4646
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4647 4648

    Args:
4649
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4650
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4651 4652
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4653 4654 4655 4656 4657
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4658
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4659 4660

    Returns:
4661
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4662

4663 4664 4665 4666
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4667
    Example:
G
guosheng 已提交
4668 4669
        .. code-block:: python

4670 4671
            import paddle.fluid as fluid

4672 4673
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4674 4675
                 name="input", shape=[3, 9, 5], dtype="float32")

4676 4677 4678 4679
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4680

4681 4682 4683 4684 4685 4686 4687 4688 4689
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4690
    """
4691
    if in_dygraph_mode():
4692 4693 4694
        num = None
        attrs = ()

S
songyouwei 已提交
4695 4696 4697 4698 4699 4700
        if isinstance(dim, Variable):
            dim = dim.numpy()
            assert dim.shape == (1,
                                 ), "dim of type Variable should have shape [1]"
            dim = dim[0]
        dim = (len(input.shape) + dim) if dim < 0 else dim
4701
        attrs += ('axis', dim)
4702 4703 4704

        if isinstance(num_or_sections, int):
            num = num_or_sections
4705
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
4706
        elif isinstance(num_or_sections, (list, tuple)):
4707
            num = len(num_or_sections)
L
Leo Chen 已提交
4708
            if utils._contain_var(num_or_sections):
4709
                raise TypeError(
L
Leo Chen 已提交
4710 4711 4712 4713
                    "The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
                    "received %s, which contains Variable." %
                    (type(num_or_sections)))
            else:
4714
                attrs += ('sections', list(num_or_sections))
4715 4716 4717 4718
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))
4719
        return core.ops.split(input, num, *attrs)
L
Leo Chen 已提交
4720

4721 4722 4723 4724 4725 4726 4727 4728 4729
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4730 4731
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4763 4764
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4765 4766 4767 4768 4769
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4770 4771
        num = num_or_sections
    else:
4772 4773 4774
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4775
        num = len(num_or_sections)
4776 4777 4778
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
L
Leo Chen 已提交
4779
        if utils._contain_var(num_or_sections):
4780 4781 4782
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4783
    outs = [
X
Xin Pan 已提交
4784
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4785 4786 4787
        for i in range(num)
    ]
    helper.append_op(
4788
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4789
    return outs
C
caoying03 已提交
4790 4791 4792 4793


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4794
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4795 4796
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4797
    .. math::
4798 4799

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4800 4801 4802 4803 4804

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4805
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4806
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4807 4808
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4809
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4810
            the default value is 1e-12.
R
ruri 已提交
4811 4812
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4813
    Returns:
R
ruri 已提交
4814
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4815 4816

    Examples:
4817

C
caoying03 已提交
4818
        .. code-block:: python
R
ruri 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4831

R
ruri 已提交
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4856 4857
    """

F
fengjiayi 已提交
4858 4859
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4860 4861
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4862 4863
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4864
    helper.append_op(
4865 4866 4867 4868
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4869
        attrs={
4870 4871
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4872 4873
        })
    return out
4874 4875


S
sneaxiy 已提交
4876
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4877
    """
Y
ying 已提交
4878 4879 4880 4881
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4882

C
chengduoZH 已提交
4883
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4884
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4885

4886 4887 4888 4889 4890
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4891
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4892

C
chengduoZH 已提交
4893
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4894
      performs in the following way.
G
guosheng 已提交
4895

4896
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4897
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4898
        last two dimensions and a batched matrix multiply supporting broadcast
4899
        applies on the two tensors.
G
guosheng 已提交
4900

Y
ying 已提交
4901 4902
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4903
    removed after matrix multiplication.
G
guosheng 已提交
4904 4905 4906

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4907 4908 4909
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4910
        alpha (float): The scale of output. Default 1.0.
4911
        name(str|None): A name for this layer(optional). If set None, the layer
4912
            will be named automatically.
G
guosheng 已提交
4913 4914

    Returns:
石晓伟 已提交
4915
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4916

G
guosheng 已提交
4917 4918 4919
    Examples:
        .. code-block:: python

4920
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4921
            # x: [B, ..., M, K], y: [B, ..., K, N]
4922
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4923

4924
            # x: [B, M, K], y: [B, K, N]
4925
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4926

4927
            # x: [B, M, K], y: [K, N]
4928
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4929

4930
            # x: [M, K], y: [K, N]
4931
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4932 4933

            # x: [B, M, K], y: [K]
4934
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4935

4936
            # x: [K], y: [K]
4937
            # fluid.layers.matmul(x, y)  # out: [1]
4938

Y
ying 已提交
4939
            # x: [M], y: [N]
4940 4941
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4942
            import paddle.fluid as fluid
4943 4944 4945
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4946
    """
4947 4948 4949 4950 4951 4952 4953
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

    if in_dygraph_mode():
4954 4955
        return core.ops.matmul(x, y, 'transpose_X', transpose_x, 'transpose_Y',
                               transpose_y, 'alpha', float(alpha))
Y
ying 已提交
4956 4957

    def __check_input(x, y):
4958 4959
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
4960 4961
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul')
Y
ying 已提交
4962 4963 4964 4965 4966
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4967
            y_shape = y_shape + [1]
Y
ying 已提交
4968 4969 4970 4971 4972 4973 4974

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4975 4976 4977 4978 4979
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)
Y
ying 已提交
4980

C
chengduo 已提交
4981
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4982
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4983 4984 4985
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4986
                if dim_x != y_shape[i]:
4987 4988 4989 4990 4991
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))
Y
ying 已提交
4992 4993 4994

    __check_input(x, y)

4995
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4996
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4997
    helper.append_op(
4998 4999 5000 5001
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
5002
        attrs=attrs)
5003
    return out
5004 5005


5006
def topk(input, k, name=None):
Q
qingqing01 已提交
5007
    """
5008
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
5009 5010
    for the last dimension.

5011 5012
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
5013 5014 5015 5016

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5017 5018
    .. code-block:: text

5019 5020 5021 5022 5023
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
5024 5025 5026 5027
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

5028
          Output:
F
fengjiayi 已提交
5029
            The first output:
5030 5031
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
5032 5033 5034 5035
                      [10, 25],
                      [6, 10]]

            The second output:
5036 5037
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
5038 5039 5040
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5041
    Args:
5042 5043 5044 5045
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
5046 5047

    Returns:
5048 5049
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
5050

F
fengjiayi 已提交
5051
    Raises:
5052
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
5053 5054 5055 5056

    Examples:
        .. code-block:: python

5057
            import paddle.fluid as fluid
5058
            import paddle.fluid.layers as layers
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
5072
    """
5073
    if in_dygraph_mode():
5074 5075 5076 5077 5078
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
        out, indices = core.ops.top_k(input, 'k', _k)
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
5079

5080 5081
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
5082 5083 5084 5085 5086
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

5087 5088 5089 5090
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
5091 5092
    helper.append_op(
        type="top_k",
W
whs 已提交
5093
        inputs=inputs,
Q
qingqing01 已提交
5094 5095
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5096
        attrs=attrs)
Q
qingqing01 已提交
5097 5098 5099 5100 5101
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5102 5103 5104 5105 5106
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
5107
    """
S
SunGaofeng 已提交
5108
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
5109

S
SunGaofeng 已提交
5110
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
5111 5112 5113
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5114

S
SunGaofeng 已提交
5115 5116 5117 5118
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

5119 5120 5121 5122 5123
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
5124
        (1) for lod mode:
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5136
        input.lod = [[4, 4]]
M
minqiyang 已提交
5137

W
whs 已提交
5138
        Computation:
5139

W
whs 已提交
5140 5141 5142 5143 5144 5145
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5146 5147 5148 5149 5150

        output.data = [[2],
                       [1],
                       [3]]

5151
        output.lod = [[2, 1]]
5152

S
SunGaofeng 已提交
5153
        (2) for padding mode:
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
5180
    Parameters:
5181

S
SunGaofeng 已提交
5182 5183
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
5184
                         where Lp is the sum of all input sequences' length and
5185 5186
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
5187
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
5188
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
5189
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
5190
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
5191 5192
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
5193
        padding_value(int): padding value.
S
SunGaofeng 已提交
5194 5195 5196
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
5197 5198

    Returns:
S
SunGaofeng 已提交
5199 5200 5201 5202 5203
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

T
tianshuo78520a 已提交
5204
        For padding mode, returns a tuple of (output, output_length), which was described as below: 
S
SunGaofeng 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

5216 5217 5218 5219

    Examples:
        .. code-block:: python

5220
            # for lod mode
S
SunGaofeng 已提交
5221
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5222
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
5223
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
5224 5225

            # for padding mode
S
SunGaofeng 已提交
5226 5227
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
5228 5229 5230
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
5231
    """
5232
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5233
    _, topk_indices = topk(input, k=1)
5234 5235

    # ctc align op
X
Xin Pan 已提交
5236
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
5262 5263


Y
fix ci.  
ying 已提交
5264
def transpose(x, perm, name=None):
Y
ying 已提交
5265
    """
5266
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
5267 5268 5269 5270 5271

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5272
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
T
tianshuo78520a 已提交
5273
        perm (list): Permute the input according to the data of perm.
5274
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5275 5276

    Returns:
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
5301 5302

    Examples:
5303

Y
ying 已提交
5304 5305
        .. code-block:: python

5306
            # use append_batch_size=False to avoid prepending extra
5307
            # batch size in shape
5308
            import paddle.fluid as fluid
5309
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
5310
                            dtype='float32', append_batch_size=False)
5311
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
5312 5313
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
5314

5315
    """
5316
    if in_dygraph_mode():
5317 5318
        out, _ = core.ops.transpose2(x, 'axis', perm)
        return out
5319

5320 5321 5322
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
5323
    check_type(perm, 'perm', list, 'transpose')
5324

Y
fix ci.  
ying 已提交
5325
    if len(perm) != len(x.shape):
Y
ying 已提交
5326
        raise ValueError(
5327 5328 5329 5330
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
5331 5332 5333
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
5334 5335 5336
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5337 5338

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5339 5340
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5341
    helper.append_op(
5342
        type='transpose2',
Y
fix ci.  
ying 已提交
5343
        inputs={'X': [x]},
5344 5345
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5346 5347
        attrs={'axis': perm})
    return out
5348 5349


5350 5351 5352 5353 5354 5355 5356
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5357
    """
5358
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5359 5360 5361
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5362 5363
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5364 5365 5366

    .. math::

L
Liufang Sang 已提交
5367 5368 5369 5370
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5371

L
Liufang Sang 已提交
5372
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5373

L
Liufang Sang 已提交
5374 5375
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5376

L
Liufang Sang 已提交
5377 5378 5379
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5380

L
Liufang Sang 已提交
5381 5382
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5383

L
Liufang Sang 已提交
5384 5385 5386 5387 5388 5389 5390
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5391

L
Liufang Sang 已提交
5392 5393 5394 5395
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
5396
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5435 5436 5437
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5450
            output.dims = {8, 8}
5451

5452
            output.lod = [[4, 4]]
5453

T
Tink_Y 已提交
5454
    Examples:
5455 5456 5457

        .. code-block:: python

B
Bai Yifan 已提交
5458
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5459
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5460
                                     dtype='float32')
5461
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5462 5463
                input=data, stride=[1, 1], filter_size=[2, 2])

5464 5465

    """
L
lujun 已提交
5466
    assert not in_dygraph_mode(), (
5467
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5478
    inputs = {"X": input}
5479
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5480 5481 5482 5483 5484
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5485
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5486
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5487
    helper.append_op(
5488
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5489
    return out
5490 5491


Y
yuyang18 已提交
5492
@templatedoc()
5493
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5494 5495
    """
    ${comment}
5496 5497

    Args:
Y
yuyang18 已提交
5498
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5499 5500
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5501 5502 5503 5504 5505
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5506
        ${out_comment}.
5507 5508

    Examples:
D
Double_V 已提交
5509
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5510
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5511
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5512 5513
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5514 5515 5516
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5517 5518 5519 5520 5521 5522
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5523
    out = helper.create_variable_for_type_inference(dtype)
5524 5525 5526 5527 5528
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5529
    return helper.append_activation(out)
5530 5531


Y
yuyang18 已提交
5532
@templatedoc()
5533 5534
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5535

5536
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5537

5538
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5539

5540
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5541

5542
    For Example:
L
lujun 已提交
5543

5544
            .. code-block:: text
L
lujun 已提交
5545

5546
                Given:
L
lujun 已提交
5547

5548 5549 5550 5551
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5552

5553
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5554

5555 5556 5557 5558
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5559 5560


5561 5562 5563
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5564

5565
    Returns:
5566
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5567 5568

    Examples:
5569

X
xuezhong 已提交
5570 5571
        .. code-block:: python

5572
            import paddle.fluid as fluid
5573
            import numpy as np
5574

5575 5576 5577 5578
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5579

5580 5581 5582 5583 5584 5585 5586 5587 5588
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5589

5590 5591 5592 5593 5594 5595 5596 5597
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5598
    helper.append_op(
5599 5600 5601 5602 5603
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5604 5605


5606 5607
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5608 5609
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5610
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
5611
    and then sums all the losses. So the shape of output Variable is
5612
    [batch_size, 1].
5613

5614 5615
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5616
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5617
            A LoDTensor or Tensor with type float32.
5618
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5619
            L1 loss op with same shape as :attr:`x`.
5620
            A LoDTensor or Tensor with type float32.
5621
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5622 5623
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5624
            by this tensor element by element.
5625
            A Tensor with type float32.
5626
        outside_weight (Variable|None): A tensor with rank at least 2. This
5627 5628
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5629
            element by element.
5630
            A Tensor with type float32.
5631
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5632 5633
           scalar with default value 1.0.

5634
    Returns:
5635
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5636 5637 5638 5639

    Examples:
        .. code-block:: python

5640
            import paddle.fluid as fluid
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5658
    """
5659

5660
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5661 5662
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5673
        attrs={'sigma': sigma if sigma is not None else 1.0})
5674
    return loss
5675 5676


5677
def one_hot(input, depth, allow_out_of_range=False):
5678
    """
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5733 5734

    Args:
5735 5736 5737 5738 5739
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5740
        allow_out_of_range(bool): A bool value indicating whether the input
5741 5742 5743 5744
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5745 5746

    Returns:
5747
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5748 5749

    Examples:
C
caoying03 已提交
5750
        .. code-block:: python
5751

5752
            import paddle.fluid as fluid
5753 5754 5755
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5756
    """
5757
    if in_dygraph_mode():
S
songyouwei 已提交
5758 5759 5760 5761 5762
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
                1, ), "depth of type Variable should have shape [1]"
            depth = depth[0]
5763 5764 5765 5766
        out = core.ops.one_hot(input, 'depth', depth, 'allow_out_of_range',
                               allow_out_of_range)
        out.stop_gradient = True
        return out
5767

5768
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5769
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5770

5771 5772
    if not isinstance(depth, Variable):
        # user attribute
5773
        inputs = {'X': input}
Y
Yi Liu 已提交
5774
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5775
    else:
5776 5777 5778
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
5779 5780
    helper.append_op(
        type="one_hot",
5781 5782
        inputs=inputs,
        attrs=attrs,
5783 5784
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5785
    return one_hot_out
Y
Yu Yang 已提交
5786 5787


Y
Yu Yang 已提交
5788
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5789
    """
Y
Yibing Liu 已提交
5790 5791 5792
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5793 5794

    Args:
Y
Yibing Liu 已提交
5795 5796 5797
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5798

5799
    Returns:
Y
Yibing Liu 已提交
5800
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5801 5802 5803 5804

    Examples:
        .. code-block:: python

5805
           import paddle.fluid as fluid
Y
yi.wu 已提交
5806
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5807
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5808 5809
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5810 5811
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5812
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5813 5814 5815 5816 5817
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5818 5819 5820
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5821
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5822
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5823 5824
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5825
            outputs={'Out': [counter]},
5826
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5827 5828 5829
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5830 5831


5832
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5833
    """
5834
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5835

5836 5837 5838 5839
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
T
tianshuo78520a 已提交
5840
    guarantee shape inference in compile-time.
C
caoying03 已提交
5841

5842
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5843

5844 5845 5846 5847
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5848
    2. 0 means the actual dimension value is going to be copied from the
T
tianshuo78520a 已提交
5849
    corresponding dimension of x. The index of 0s in shape can not exceed
5850
    the dimension of x.
5851 5852

    Here are some examples to explain it.
C
caoying03 已提交
5853 5854

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5855
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5856
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5857

5858
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5859 5860
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5861 5862
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5863
    dimensions.
C
caoying03 已提交
5864

5865
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5866 5867 5868 5869
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5870

5871 5872
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5873

C
caoying03 已提交
5874
    Args:
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5892

5893
    Returns:
5894
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5895

X
Xin Pan 已提交
5896
    Raises:
5897 5898 5899 5900
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5901

C
caoying03 已提交
5902 5903
    Examples:
        .. code-block:: python
G
guosheng 已提交
5904

5905
            import paddle.fluid as fluid
5906 5907 5908

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5909 5910
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5911
            reshaped_1 = fluid.layers.reshape(
5912 5913
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5914 5915 5916 5917 5918 5919

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5920
            # the shape of reshaped_2 is [5,10].
M
mapingshuo 已提交
5921 5922 5923 5924 5925 5926

            # example 3:
            data_3 = fluid.data(
              name="data_3", shape=[2,4,6], dtype='float32')
            reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8])
            # the shape of reshaped_3 is [6,8].
C
caoying03 已提交
5927
    """
5928
    if in_dygraph_mode():
L
Leo Chen 已提交
5929
        #TODO(zhiqiu): enable inplace in dygraph mode.
5930 5931 5932 5933 5934 5935
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
5936
            if utils._contain_var(shape):
5937 5938 5939 5940 5941 5942 5943 5944 5945
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

5946
        out, _ = core.ops.reshape2(x, 'shape', shape)
5947
        return dygraph_utils._append_activation_in_dygraph(out, act)
5948

5949 5950
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'reshape')
5951 5952
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5953

5954
    helper = LayerHelper("reshape2", **locals())
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5979 5980
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5981 5982 5983
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5984 5985 5986 5987
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5988 5989
                else:
                    assert dim_size > 0, (
5990
                        "Each dimension value of 'shape' in reshape must not "
T
tianshuo78520a 已提交
5991
                        "be negative except one unknown dimension. "
5992 5993
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5994 5995
        return attrs_shape

5996 5997 5998 5999 6000 6001 6002 6003 6004
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
6005
        if utils._contain_var(shape):
6006 6007 6008 6009 6010 6011 6012
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6013
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6014
    helper.append_op(
6015
        type="reshape2",
X
Xin Pan 已提交
6016
        inputs=inputs,
6017
        attrs=attrs,
6018 6019
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6020

D
dzhwinter 已提交
6021
    return helper.append_activation(out)
6022

6023

6024
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6025
    """
6026 6027 6028
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
6029

H
haowang101779990 已提交
6030

6031
    .. code-block:: text 
H
haowang101779990 已提交
6032

6033
        Case1:
H
haowang101779990 已提交
6034

6035
          Input:
H
haowang101779990 已提交
6036 6037
            X.shape = (1, 3, 1, 5)
            axes = [0]
6038
          Output:
H
haowang101779990 已提交
6039 6040
            Out.shape = (3, 1, 5)

6041
        Case2:
H
haowang101779990 已提交
6042

6043
          Input:
H
haowang101779990 已提交
6044 6045
            X.shape = (1, 3, 1, 5)
            axes = []
6046
          Output:
H
haowang101779990 已提交
6047
            Out.shape = (3, 5)
M
minqiyang 已提交
6048

6049 6050 6051 6052 6053 6054 6055 6056
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
6057
    Args:
6058 6059 6060 6061 6062
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
6063 6064

    Returns:
6065
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
6066 6067 6068 6069

    Examples:
        .. code-block:: python

6070
            import paddle.fluid as fluid
6071
            import paddle.fluid.layers as layers
6072 6073 6074 6075
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
6076 6077
    """
    helper = LayerHelper("squeeze", **locals())
6078 6079 6080
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'squeeze')
6081
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
6082 6083
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6084
    helper.append_op(
6085
        type="squeeze2",
6086
        inputs={"X": input},
Y
Yibing Liu 已提交
6087
        attrs={"axes": axes},
6088 6089
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6090

6091 6092 6093
    return out


6094
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6095
    """
6096
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
6097 6098
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6099

M
minqiyang 已提交
6100
    For example:
H
haowang101779990 已提交
6101 6102 6103

    .. code-block:: text

M
minqiyang 已提交
6104
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6105
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6106

Y
Yibing Liu 已提交
6107
    Args:
6108
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
6109
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
6110
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6111 6112

    Returns:
6113
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
6114 6115 6116 6117

    Examples:
        .. code-block:: python

6118 6119 6120
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
6121

Y
Yibing Liu 已提交
6122
    """
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
6150
        if utils._contain_var(axes):
6151 6152 6153 6154
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
6155 6156
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6157
    helper.append_op(
6158
        type="unsqueeze2",
6159 6160
        inputs=inputs,
        attrs=attrs,
6161 6162
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6163

6164 6165
    return out

6166

Y
yangyaming 已提交
6167
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6168
    """
Y
Yibing Liu 已提交
6169
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6170 6171 6172 6173
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
6174
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6175 6176 6177 6178 6179 6180

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6181
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6182 6183 6184
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6185
            target_lod: [4, 2]
Y
yangyaming 已提交
6186 6187

            then we get a 1-level LoDTensor:
6188
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6189 6190 6191 6192 6193 6194
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6195
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6196 6197 6198 6199
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6200
                y.data = [[2, 4]]
Y
yangyaming 已提交
6201 6202 6203
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6204
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6205 6206 6207 6208 6209 6210
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6211
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6212 6213 6214 6215
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6216
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6217 6218 6219 6220
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6221
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6222 6223 6224 6225
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
6226
        x (Variable): Input variable which could be a Tensor or LoDTensor.
6227
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6228
                           from :attr:`y`.
Y
yangyaming 已提交
6229
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6230
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6231 6232

    Returns:
Y
Yibing Liu 已提交
6233
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6234 6235

    Raises:
Y
Yibing Liu 已提交
6236
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6237 6238 6239 6240

    Examples:
        .. code-block:: python

6241
            import paddle.fluid as fluid
6242 6243 6244
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6245 6246
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6247
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
6285
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
6286 6287 6288 6289 6290 6291

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
6292

6293 6294 6295 6296 6297 6298 6299 6300 6301 6302
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
6303 6304 6305
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

6306 6307
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6308 6309 6310 6311 6312 6313 6314 6315

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
6316
    helper.append_op(
6317
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
6318
    return out
D
dragonwarrior 已提交
6319 6320


6321 6322
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
6323
    """
6324 6325 6326
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
6327 6328 6329 6330 6331

    The formula is as follows:

    .. math::

6332
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6333 6334 6335

    In the above equation:

6336 6337 6338 6339
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
6340 6341 6342


    Args:
6343 6344 6345
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
6346 6347 6348 6349
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
6350 6351
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
6352 6353 6354 6355 6356
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6357
    Returns:
6358 6359
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6360 6361 6362

    Examples:

6363 6364 6365 6366 6367 6368 6369 6370
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6371 6372 6373 6374 6375 6376 6377 6378
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6379
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6380
            (dims))
6381 6382 6383 6384
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6385

X
Xin Pan 已提交
6386 6387 6388
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6389 6390 6391 6392 6393 6394 6395
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6396 6397 6398 6399 6400 6401 6402
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6403 6404

    return lrn_out
G
guosheng 已提交
6405 6406 6407 6408


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6409 6410
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6411

S
SunGaofeng 已提交
6412 6413 6414 6415
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6435
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6436
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6437 6438
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6439 6440
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6441 6442 6443
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6444 6445

    Returns:
S
SunGaofeng 已提交
6446 6447 6448 6449
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6450 6451 6452

    Examples:
        .. code-block:: python
G
guosheng 已提交
6453

S
SunGaofeng 已提交
6454 6455
            # x is a rank 2 tensor variable with shape [100, 224].
            # out will be a tensor of shape [101, 227] 
S
SunGaofeng 已提交
6456
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6457
            x = fluid.data(name='data', shape=[100, 224], dtype='float32')
G
guosheng 已提交
6458 6459 6460 6461 6462
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6463
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6464 6465 6466 6467 6468 6469 6470
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6471 6472


C
chengduo 已提交
6473 6474
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6475
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6476
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6477 6478
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6503 6504
		And
            pad_value = -1,
C
chengduo 已提交
6505

T
Tink_Y 已提交
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6520 6521

    Args:
T
tianshuo78520a 已提交
6522
        x (Variable): Tensor, its shape specifies the shape of output.
S
SunGaofeng 已提交
6523 6524
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6525
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6526 6527 6528
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6529 6530

    Returns:
S
SunGaofeng 已提交
6531 6532 6533 6534
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6535 6536 6537 6538 6539 6540

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6541
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6542 6543
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6544 6545 6546 6547 6548
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6549
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6550 6551 6552 6553 6554 6555 6556 6557 6558
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6559 6560 6561 6562 6563 6564
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6565 6566
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6567

6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6585
    Parameters:
6586
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6602 6603 6604 6605 6606 6607

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6608
            
6609
            import paddle.fluid as fluid
6610
            import paddle.fluid.layers as layers
6611 6612 6613 6614 6615 6616 6617 6618

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
6619 6620

    if in_dygraph_mode():
6621 6622
        return core.ops.label_smooth(label, prior_dist, 'epsilon',
                                     float(epsilon))
6623

6624 6625
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6626
    smooth_label = helper.create_variable_for_type_inference(dtype)
6627 6628 6629 6630 6631 6632 6633
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6634 6635


W
wopeizl 已提交
6636 6637 6638
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6650
    Args:
6651 6652 6653 6654 6655 6656
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6657
    Returns:
6658 6659 6660
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6661
    Examples:
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6680 6681
                input=x,
                rois=rois,
6682 6683
                pooled_height=1,
                pooled_width=1,
6684
                spatial_scale=1.0)
6685 6686 6687 6688 6689
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6707 6708


J
jerrywgz 已提交
6709 6710 6711 6712 6713 6714
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6715 6716
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6717 6718 6719 6720 6721
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6722
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6734 6735

    Returns:
W
wangguanzhong 已提交
6736 6737 6738 6739 6740
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6741 6742 6743
    Examples:
        .. code-block:: python

6744
            import paddle.fluid as fluid
6745 6746 6747 6748
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6749 6750 6751
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6752 6753 6754 6755 6756 6757
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6758
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6773
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6774
    """
S
SunGaofeng 已提交
6775 6776 6777 6778
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6779 6780 6781 6782 6783 6784 6785 6786

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6787 6788 6789 6790 6791 6792
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6793 6794 6795
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6796 6797 6798
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6799 6800

    Returns:
S
SunGaofeng 已提交
6801 6802 6803
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6804

S
SunGaofeng 已提交
6805
    Example:
6806 6807
        .. code-block:: python

S
SunGaofeng 已提交
6808
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6809 6810 6811
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6812
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6813 6814
    """
    label = one_hot(label, depth=input.shape[-1])
6815
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6816 6817 6818 6819 6820 6821
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6822 6823


6824 6825 6826 6827
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6828
                 resample='BILINEAR',
6829 6830
                 actual_shape=None,
                 align_corners=True,
6831 6832
                 align_mode=1,
                 data_format='NCHW'):
6833
    """
R
ruri 已提交
6834
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6835

6836 6837 6838
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
T
tianshuo78520a 已提交
6839
    and the resizing only applies on the three dimensions(depth, height and width).
6840

6841
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6842 6843
    future and only use :attr:`out_shape` instead.

6844
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6845

6846
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6847

K
Kaipeng Deng 已提交
6848 6849
        'TRILINEAR' : Trilinear interpolation

6850
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6851

6852
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
6853
    in both the 3rd dimension(in height direction) and the 4th dimension(in width 
6854 6855 6856 6857 6858 6859 6860 6861
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6862 6863 6864 6865 6866
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tianshuo78520a 已提交
6867
    Align_corners and align_mode are optional parameters,the calculation method 
6868 6869 6870 6871
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6872
    .. code-block:: text
6873

T
Tink_Y 已提交
6874
        For scale:
6875
          
T
Tink_Y 已提交
6876
            if align_corners = True && out_size > 1 :
6877

T
Tink_Y 已提交
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6889

T
Tink_Y 已提交
6890 6891
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6892

T
Tink_Y 已提交
6893 6894
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6895

T
Tink_Y 已提交
6896 6897
          else:
              align_corners = True
6898

T
Tink_Y 已提交
6899 6900
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6901

T
Tink_Y 已提交
6902 6903
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6904

T
Tink_Y 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6915

T
Tink_Y 已提交
6916 6917 6918 6919
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6920

T
Tink_Y 已提交
6921 6922
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6923

K
Kaipeng Deng 已提交
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6946 6947 6948 6949 6950 6951
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6952 6953 6954
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6955 6956


R
ruri 已提交
6957
    Parameters:
6958 6959
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6960
        out_shape(list|tuple|Variable|None): Output shape of image resize
6961 6962 6963 6964
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6965 6966 6967
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6968
             Default: None.
6969 6970
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6971 6972
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6973 6974 6975
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6976
                                :attr:`out_shape` and :attr:`scale` specifying
6977 6978
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6979 6980 6981 6982 6983
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6984
                                errors would be occurred in graph constructing stage.
6985
                                Default: None
6986 6987 6988 6989
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6990
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6991
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6992
                            src_idx = scale*dst_index.
6993 6994 6995 6996 6997
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6998 6999

    Returns:
7000 7001
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
7002

7003 7004 7005
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
7006 7007 7008 7009
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
7010
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
7011 7012
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
7013
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
7014
        TypeError: align_corners should be a bool value
7015
        ValueError: align_mode can only be '0' or '1'
7016
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
7017

7018 7019
    Examples:
        .. code-block:: python
R
ruri 已提交
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7052

R
ruri 已提交
7053 7054 7055 7056 7057 7058
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7059

R
ruri 已提交
7060 7061 7062 7063 7064 7065 7066 7067
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7068

R
ruri 已提交
7069 7070
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7071

R
ruri 已提交
7072 7073 7074 7075
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
7076

R
ruri 已提交
7077
		# [2L, 3L, 12L, 12L]
7078

7079
    """
7080 7081
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7082
        'TRILINEAR': 'trilinear',
7083 7084
        'NEAREST': 'nearest',
    }
7085 7086
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7087 7088
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7089
    resample_type = resample_methods[resample]
7090

K
Kaipeng Deng 已提交
7091 7092 7093 7094 7095
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7096 7097 7098 7099 7100
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7101
    if out_shape is None and scale is None:
7102
        raise ValueError("One of out_shape and scale must not be None.")
7103
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7104
    dtype = helper.input_dtype()
7105

7106 7107 7108 7109 7110 7111 7112 7113 7114
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

7115 7116 7117
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7118 7119 7120 7121 7122
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

7123
    inputs = {"X": input}
D
dengkaipeng 已提交
7124
    attrs = {
7125 7126 7127
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
7128 7129
        "interp_method": resample_type,
        "align_corners": align_corners,
7130 7131
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
7132 7133
    }

7134
    if out_shape is not None:
7135
        if isinstance(out_shape, Variable):
7136
            out_shape.stop_gradient = True
7137
            inputs['OutSize'] = out_shape
7138 7139
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7140 7141
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
7170 7171 7172 7173
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
7174 7175 7176 7177 7178 7179 7180
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
7181 7182 7183 7184
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
7185 7186 7187 7188 7189 7190 7191 7192 7193
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
7194

7195
    else:
7196 7197 7198
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
7199
        elif isinstance(scale, float) or isinstance(scale, int):
7200
            if scale <= 0:
7201
                raise ValueError("Attr(scale) should be greater than zero.")
7202
            attrs['scale'] = float(scale)
7203 7204 7205
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
7206

7207
    if isinstance(actual_shape, Variable):
7208 7209 7210 7211 7212
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
7213 7214 7215 7216
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7217
    out = helper.create_variable_for_type_inference(dtype)
7218
    helper.append_op(
7219
        type='{}_interp'.format(resample_type),
7220
        inputs=inputs,
7221
        outputs={"Out": out},
D
dengkaipeng 已提交
7222
        attrs=attrs)
7223
    return out
F
stash  
fengjiayi 已提交
7224 7225


7226
@templatedoc(op_type="bilinear_interp")
7227 7228 7229 7230
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7231 7232
                    actual_shape=None,
                    align_corners=True,
7233 7234
                    align_mode=1,
                    data_format='NCHW'):
7235
    """
R
ruri 已提交
7236
    This op resizes the input by performing bilinear interpolation based on given
7237
    output shape which specified by actual_shape, out_shape and scale
7238 7239
    in priority order.

7240 7241 7242
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

7243 7244 7245 7246
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7247 7248
    again in the other direction.

7249
    For details of bilinear interpolation, please refer to Wikipedia:
7250
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7251

T
tianshuo78520a 已提交
7252
    Align_corners and align_mode are optional parameters,the calculation 
7253 7254 7255 7256
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7257
    .. code-block:: text
7258

T
Tink_Y 已提交
7259
        For scale:
7260
          
T
Tink_Y 已提交
7261
            if align_corners = True && out_size > 1 :
7262

T
Tink_Y 已提交
7263 7264 7265 7266
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
7267
              scale_factor = float(in_size/out_size)
7268

T
Tink_Y 已提交
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7279

T
Tink_Y 已提交
7280
          else:
T
tink2123 已提交
7281

T
Tink_Y 已提交
7282 7283 7284 7285
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7286

R
ruri 已提交
7287 7288
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
7289
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
7290
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
7291
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
7292 7293
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
7294
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7295
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7296
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7297
             Default: None.
7298 7299 7300
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7301
                                :attr:`out_shape` and :attr:`scale` specifying
7302 7303
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7304 7305 7306 7307 7308
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7309
                                errors would be occurred in graph constructing stage.
7310
                                Default: None
7311 7312
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7313 7314 7315 7316
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
7317
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
7318 7319

    Returns:
R
ruri 已提交
7320 7321
	Variable: 4-D tensor(NCHW or NHWC).
    
7322 7323
    Examples:
        .. code-block:: python
R
ruri 已提交
7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7356

R
ruri 已提交
7357 7358 7359 7360 7361 7362
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7363

R
ruri 已提交
7364 7365 7366 7367 7368 7369 7370 7371
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7372

R
ruri 已提交
7373 7374
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7375

R
ruri 已提交
7376 7377 7378 7379
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7380

R
ruri 已提交
7381
		# [2L, 3L, 12L, 12L]
7382

7383 7384
    """

7385
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7386
                        align_corners, align_mode, data_format)
7387 7388


K
Kaipeng Deng 已提交
7389 7390 7391 7392 7393 7394 7395
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7396 7397
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7398
    """
R
ruri 已提交
7399
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7400 7401 7402
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7403 7404 7405
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7406 7407 7408 7409 7410 7411 7412 7413
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

T
tianshuo78520a 已提交
7414
    Align_corners and align_mode are optional parameters,the calculation 
K
Kaipeng Deng 已提交
7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7434

K
Kaipeng Deng 已提交
7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7453
    Parameters:
7454 7455
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7456
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7457
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7458 7459 7460
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7461
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7462 7463 7464 7465 7466 7467
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7468 7469 7470 7471 7472
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7473
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
7474 7475 7476
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7477 7478 7479 7480
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7481 7482

    Returns:
R
ruri 已提交
7483
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7484 7485 7486

    Examples:
        .. code-block:: python
R
ruri 已提交
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7519

R
ruri 已提交
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7538

R
ruri 已提交
7539 7540 7541 7542
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7543

R
ruri 已提交
7544
		# [2L, 3L, 12L, 12L, 12L]
7545 7546 7547



K
Kaipeng Deng 已提交
7548 7549 7550
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7551
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7552 7553


7554
@templatedoc(op_type="nearest_interp")
7555 7556 7557 7558
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7559
                   actual_shape=None,
7560 7561
                   align_corners=True,
                   data_format='NCHW'):
7562
    """
R
ruri 已提交
7563
    This op resizes the input by performing nearest neighbor interpolation in both the
7564 7565
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7566

7567 7568 7569
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7570 7571
    Example:

T
Tink_Y 已提交
7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7584
          
T
Tink_Y 已提交
7585 7586
          if:
              align_corners = False
7587

T
Tink_Y 已提交
7588 7589
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7590

T
Tink_Y 已提交
7591 7592
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7593

T
Tink_Y 已提交
7594 7595
          else:
              align_corners = True
7596

T
Tink_Y 已提交
7597 7598
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7599

T
Tink_Y 已提交
7600 7601
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7602 7603


7604
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7605
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7606

R
ruri 已提交
7607
    Parameters:
7608 7609
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7610
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7611
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7612
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7613
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7614 7615 7616
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7617 7618
                                dynamically. If provided, image resize
                                according to this given shape rather than
7619
                                :attr:`out_shape` and :attr:`scale` specifying
7620 7621
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7622 7623 7624 7625 7626
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7627
                                errors would be occurred in graph constructing stage.
7628
                                Default: None
7629
        align_corners(bool): ${align_corners_comment}
7630 7631 7632 7633
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7634 7635

    Returns:
R
ruri 已提交
7636
	Variable: 4-D tensor(NCHW or NHWC).
7637 7638 7639

    Examples:
        .. code-block:: python
R
ruri 已提交
7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7672

R
ruri 已提交
7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7688

R
ruri 已提交
7689 7690
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7691

R
ruri 已提交
7692 7693 7694 7695 7696 7697
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7698 7699 7700



7701 7702
    """

7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7713 7714 7715 7716


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7717
    This op resizes a batch of images. The short edge of input images will be
7718 7719
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7720 7721
    constant.

R
ruri 已提交
7722 7723
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7724
        out_short_len(int): The length of output images' short edge.
7725
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7726

7727
    Returns:
R
ruri 已提交
7728
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7729 7730 7731 7732

    Examples:
        .. code-block:: python

7733
            import paddle.fluid as fluid
R
ruri 已提交
7734
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7735
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7746 7747 7748
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7749 7750 7751
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7752
def gather(input, index, overwrite=True):
W
whs 已提交
7753
    """
Q
qiaolongfei 已提交
7754 7755
    **Gather Layer**

7756
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7757 7758 7759 7760
    of X indexed by `index` and concatenate them together.

    .. math::

7761
        Out = X[Index]
W
whs 已提交
7762 7763 7764 7765 7766 7767 7768


    .. code-block:: text


                Given:

7769 7770
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7781 7782 7783 7784 7785
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7786 7787 7788 7789 7790
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7791 7792 7793 7794 7795

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7796

W
whs 已提交
7797 7798
        .. code-block:: python

7799
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7800 7801
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7802 7803 7804 7805
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7806
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7807 7808 7809 7810
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7811 7812
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7813 7814 7815
    return out


7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7868 7869 7870
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7871
        name (str|None): A name for this layer(optional). If set None, the
7872
                         layer will be named automatically.
7873 7874 7875 7876 7877 7878 7879 7880 7881

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7882 7883
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7884 7885 7886 7887 7888
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
7889 7890 7891 7892 7893
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
7894 7895 7896 7897 7898 7899 7900 7901
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7902
def scatter(input, index, updates, name=None, overwrite=True):
7903 7904 7905
    """
    **Scatter Layer**

7906
    Output is obtained by updating the input on selected indices based on updates.
7907

7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7932 7933

    Args:
7934 7935
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
T
tianshuo78520a 已提交
7936
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
7937 7938
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7939 7940
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7941
	    Default value is True.
7942 7943

    Returns:
7944
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7945 7946 7947 7948 7949

    Examples:

        .. code-block:: python

7950
            import numpy as np
7951 7952
            import paddle.fluid as fluid

7953 7954 7955
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7956

7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7971 7972 7973
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7974
    out = helper.create_variable_for_type_inference(dtype)
7975 7976 7977 7978 7979
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7980
        attrs={'overwrite': overwrite},
7981 7982 7983 7984
        outputs={"Out": out})
    return out


7985 7986 7987 7988 7989
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7990 7991 7992
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7993 7994 7995 7996
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7997

7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
S
ShenLiang 已提交
8029
        ref (Variable): The ref input. Its dtype should be float32, float64.
8030 8031
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
8032 8033 8034
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
8035 8036

    Returns:
8037
        output (Variable): The output is a tensor with the same shape and dtype as ref.
8038 8039 8040 8041 8042 8043 8044

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

8045 8046 8047
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
8048 8049 8050 8051 8052 8053 8054

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
8055
    dtype = helper.input_dtype(input_param_name='ref')
8056 8057 8058 8059 8060
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
S
ShenLiang 已提交
8086
        updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64.
8087 8088
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
8089
        name (str|None): The output variable name. If set None, the layer will be named automatically.
8090 8091 8092 8093 8094 8095 8096 8097 8098 8099

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

8100 8101
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
8102 8103 8104 8105 8106 8107 8108
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8122

8123
    Examples:
Q
qingqing01 已提交
8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
8137
    """
F
stash  
fengjiayi 已提交
8138
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8139
    dtype = x.dtype
X
Xin Pan 已提交
8140
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8141
    if seed is None:
8142
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8143
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8144
    if isinstance(seed, int):
F
fengjiayi 已提交
8145 8146 8147 8148 8149
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8150 8151 8152 8153
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8154
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8155 8156
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8157 8158
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8159
    return out
W
whs 已提交
8160 8161


8162
def log(x, name=None):
W
wanghaoshuang 已提交
8163 8164 8165 8166 8167
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8168
        Out = \\ln(x)
W
wanghaoshuang 已提交
8169 8170

    Args:
W
Wilber 已提交
8171 8172 8173
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
8174 8175

    Returns:
W
Wilber 已提交
8176
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
8177 8178 8179 8180 8181

    Examples:

        .. code-block:: python

8182
            import paddle.fluid as fluid
W
Wilber 已提交
8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
8196
    """
8197
    if in_dygraph_mode():
8198
        return core.ops.log(x)
8199

8200
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8201
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8202
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8203
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8204
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8205 8206 8207
    return out


Z
zhupengyang 已提交
8208
@templatedoc()
8209
def relu(x, name=None):
W
wanghaoshuang 已提交
8210
    """
Z
zhupengyang 已提交
8211
    ${comment}
W
wanghaoshuang 已提交
8212 8213

    Args:
Z
zhupengyang 已提交
8214 8215 8216 8217
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
8218 8219

    Returns:
Z
zhupengyang 已提交
8220
        Variable: ${out_comment}
W
wanghaoshuang 已提交
8221 8222 8223 8224 8225

    Examples:

        .. code-block:: python

8226
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8227 8228 8229 8230 8231 8232 8233 8234 8235
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
8236
    if in_dygraph_mode():
8237
        return core.ops.relu(x)
8238

8239
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8240
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8241
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8242
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8243 8244
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8245
    return out
8246 8247


C
chengduo 已提交
8248 8249
def selu(x, scale=None, alpha=None, name=None):
    """
8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
8264 8265

    Args:
8266 8267
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
8268 8269 8270
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8271
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
8272 8273 8274
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8275 8276
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
8277 8278

    Returns:
8279
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
8280 8281 8282 8283

    Examples:

        .. code-block:: python
8284 8285
             
            import paddle.fluid as fluid
8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8313 8314 8315
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8316 8317 8318 8319
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8320
    .. math::
8321

H
haowang101779990 已提交
8322
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8323

8324
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8325 8326 8327
    is then calculated from it.


L
Liufang Sang 已提交
8328 8329
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
8330
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8331
                           Its shape should be the same as input.
L
Liufang Sang 已提交
8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
8344 8345 8346
    Examples:

        .. code-block:: python
8347

B
Bai Yifan 已提交
8348
            import paddle.fluid as fluid
L
Liufang Sang 已提交
8349
            iou_shape = [None, 32, 32]
8350
            num_classes = 5
L
Liufang Sang 已提交
8351 8352 8353
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
8354
                                                          num_classes)
W
whs 已提交
8355 8356 8357
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8358 8359 8360
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8361 8362
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8363 8364
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8365
        outputs={
W
whs 已提交
8366 8367 8368
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8369 8370 8371
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8372 8373 8374 8375 8376 8377


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8378 8379
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8380

8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8409 8410 8411 8412 8413 8414
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8415
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8416
            iteration. If it is a list/tuple of integers, it's length must be the same
8417
            as the rank of `x`
S
SunGaofeng 已提交
8418 8419 8420
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8421
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8422 8423 8424 8425 8426
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8427 8428

    Returns:
S
SunGaofeng 已提交
8429 8430 8431 8432
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8433 8434 8435 8436 8437 8438 8439 8440

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8441
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8442 8443
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8444 8445 8446
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8447 8448
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8449 8450 8451 8452 8453

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8454
            isinstance(shape, Variable)):
8455 8456 8457 8458 8459
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8460
    out = helper.create_variable_for_type_inference(x.dtype)
8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8478 8479


8480 8481 8482 8483 8484 8485
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8486 8487
        * Case 1 (input is a 2-D Tensor):
            Input:
8488
                X.shape = [3, 5]
8489 8490 8491 8492 8493 8494 8495
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8496 8497 8498
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8509
                shape = [2, 2, -1]
8510 8511
                offsets = [0, 0, 1]
            Output:
8512 8513 8514 8515 8516
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8517 8518

    Parameters:
8519
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8520 8521
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
T
tianshuo78520a 已提交
8522
            the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor.
8523
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8524 8525
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8526 8527
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
T
tianshuo78520a 已提交
8528
            must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
8529 8530 8531 8532 8533
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8534 8535

    Returns:
8536
        Variable: The cropped Tensor has same data type with `x`.
8537 8538

    Raises:
8539 8540 8541 8542 8543 8544
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8545 8546 8547 8548 8549 8550

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8551
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8552 8553
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8554 8555
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8556 8557 8558 8559
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8560
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8561 8562
            # crop1.shape = [-1, 2, 3]

8563 8564 8565 8566 8567
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8568

8569 8570
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8571 8572 8573
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8574 8575
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8576 8577 8578 8579 8580
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8581 8582
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
8583 8584 8585
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8586 8587 8588 8589 8590 8591 8592 8593

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8618 8619 8620
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8621
        attrs['offsets'] = [-1] * len(x.shape)
L
Leo Chen 已提交
8622
    elif utils._contain_var(offsets):
8623
        new_offsets_tensor = []
8624
        offsets_attr = []
8625 8626 8627 8628
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8629
                offsets_attr.append(-1)
8630
            else:
8631
                _attr_offsets_check(dim)
8632 8633 8634
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8635
                offsets_attr.append(dim)
8636
        ipts['OffsetsTensor'] = new_offsets_tensor
8637
        attrs['offsets'] = offsets_attr
8638
    else:
8639 8640
        for offset in offsets:
            _attr_offsets_check(offset)
8641 8642 8643 8644 8645
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
L
Leo Chen 已提交
8646
    elif utils._contain_var(shape):
8647 8648
        new_shape_tensor = []
        shape_attr = []
8649
        for dim_size in shape:
8650 8651 8652
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8653
                shape_attr.append(0)
8654
            else:
8655
                _attr_shape_check(dim_size)
8656 8657 8658 8659 8660 8661 8662 8663
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8664 8665
        for dim_size in shape:
            _attr_shape_check(dim_size)
8666 8667 8668 8669 8670 8671 8672 8673 8674 8675
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8676 8677 8678 8679 8680 8681 8682 8683
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8684 8685 8686 8687 8688 8689
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8690 8691

    Returns:
8692
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8693 8694 8695 8696 8697 8698 8699

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8700

S
SunGaofeng 已提交
8701
            import paddle.fluid as fluid
8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8716 8717 8718 8719
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8720
            isinstance(out_shape, Variable)):
W
whs 已提交
8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8742 8743 8744 8745 8746 8747 8748
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
T
tianshuo78520a 已提交
8749
    Pad 2-d images according to 'paddings' and 'mode'.
W
whs 已提交
8750 8751 8752
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

T
tianshuo78520a 已提交
8771
    Returns: a 4-D Tensor padded according to paddings and mode and data type is same as input.
L
Liufang Sang 已提交
8772 8773 8774 8775 8776

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8777
        .. code-block:: text
W
whs 已提交
8778

T
Tink_Y 已提交
8779
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8780

T
Tink_Y 已提交
8781 8782
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8783

T
Tink_Y 已提交
8784
	      Case 0:
M
minqiyang 已提交
8785

T
Tink_Y 已提交
8786 8787 8788
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8789

T
Tink_Y 已提交
8790 8791 8792
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8793

T
Tink_Y 已提交
8794
	      Case 1:
M
minqiyang 已提交
8795

T
Tink_Y 已提交
8796 8797
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8798

T
Tink_Y 已提交
8799 8800 8801
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8802

T
Tink_Y 已提交
8803
	      Case 2:
M
minqiyang 已提交
8804

T
Tink_Y 已提交
8805 8806
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8807

T
Tink_Y 已提交
8808 8809 8810
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8811

L
Liufang Sang 已提交
8812
    Code Examples:
W
whs 已提交
8813 8814
        .. code-block:: python

B
Bai Yifan 已提交
8815
          import paddle.fluid as fluid
L
Liufang Sang 已提交
8816
          data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
8817 8818 8819
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8820
    """
8821 8822 8823 8824 8825 8826 8827

    if in_dygraph_mode():
        _paddings = paddings.numpy().tolist() if isinstance(
            paddings, Variable) else paddings
        return core.ops.pad2d(input, 'mode', mode, 'pad_value', pad_value,
                              'data_format', data_format, 'paddings', _paddings)

8828 8829 8830 8831 8832 8833 8834 8835
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
    inputs = {'X': [input]}
    if isinstance(paddings, Variable):
        inputs['Paddings'] = [paddings]
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8836
    helper = LayerHelper('pad2d', **locals())
8837 8838 8839 8840

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8841
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8842
    out = helper.create_variable_for_type_inference(dtype)
8843

W
whs 已提交
8844
    helper.append_op(
8845
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8846 8847 8848 8849

    return out


8850 8851 8852 8853 8854 8855 8856
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8857 8858
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8859
    Returns:
8860
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8861 8862 8863 8864 8865

    Examples:

        .. code-block:: python

8866
            import paddle.fluid as fluid
8867 8868 8869 8870 8871 8872 8873 8874 8875
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8876 8877
    """
    helper = LayerHelper('elu', **locals())
8878
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
X
Xin Pan 已提交
8879
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8892

8893 8894
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8895 8896 8897 8898
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8899 8900 8901

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8902 8903 8904 8905 8906

    Examples:

        .. code-block:: python

8907
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8908 8909 8910 8911 8912 8913 8914 8915
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8916 8917
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8918
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8930 8931 8932 8933
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8934
    Args:
8935 8936 8937
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8938 8939

    Returns:
8940
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8941 8942 8943 8944 8945

    Examples:

        .. code-block:: python

8946
            import paddle.fluid as fluid
8947

8948
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8949 8950 8951

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8952
            # y_1 is x^{2.0}
8953 8954 8955 8956

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8957
            # y_2 is x^{3.0}
8958 8959
    """
    helper = LayerHelper('pow', **locals())
8960 8961 8962 8963 8964 8965 8966 8967
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8968
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8969
    helper.append_op(
8970
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8971 8972 8973 8974
    return out


@templatedoc()
8975
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8976 8977 8978 8979 8980 8981 8982 8983 8984 8985
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8986
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8987 8988 8989 8990 8991

    Examples:

        .. code-block:: python

8992
            import paddle.fluid as fluid
8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

9008 9009
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
9010
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
9024 9025 9026 9027 9028 9029 9030
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
9031 9032

    Returns:
9033
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
9034 9035 9036 9037 9038

    Examples:

        .. code-block:: python

9039
            import paddle.fluid as fluid
9040 9041
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
9042 9043
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9044
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
9057 9058 9059 9060 9061 9062 9063
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
9064
    Args:
9065 9066 9067 9068 9069
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
9070 9071

    Returns:
9072 9073

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
9074 9075 9076 9077

    Examples:

        .. code-block:: python
9078 9079 9080 9081 9082 9083
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
9084
            y = fluid.layers.swish(x, beta=2.0)
9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
9122 9123
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9124
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9125 9126 9127 9128 9129 9130 9131 9132
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9133 9134 9135 9136
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9137 9138
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9139

J
jerrywgz 已提交
9140 9141 9142 9143 9144 9145 9146 9147
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9148
    Args:
W
wangguanzhong 已提交
9149 9150
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
9151
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
9152 9153 9154 9155 9156
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
9157 9158

    Returns:
W
wangguanzhong 已提交
9159 9160 9161 9162
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
9163 9164 9165 9166 9167

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9168 9169
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
9170
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
9171
            mode = 'channel'
J
jerrywgz 已提交
9172 9173 9174
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9175 9176 9177 9178 9179 9180 9181 9182
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
9183
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
9184 9185
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9186
        attr=helper.param_attr,
J
jerrywgz 已提交
9187 9188 9189
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
9190
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
9191
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9192 9193 9194 9195 9196 9197 9198 9199 9200
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9201 9202 9203 9204 9205 9206 9207 9208
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
9209 9210
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
9211
    Returns:
9212
        ${out_type}: ${out_comment}
9213 9214 9215

    Examples:

9216
    .. code-block:: python
9217

9218
            import paddle.fluid as fluid
9219 9220 9221 9222 9223 9224 9225 9226 9227
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
9228 9229
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
9247 9248
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

9249
    Returns:
9250
        output(${out_type}): ${out_comment}
9251 9252 9253 9254 9255

    Examples:

        .. code-block:: python

9256
            import paddle.fluid as fluid
W
Wilber 已提交
9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
9270
    """
9271
    if in_dygraph_mode():
9272
        return core.ops.leaky_relu(x, 'alpha', alpha)
9273

9274 9275
    inputs = {'X': [x]}
    attrs = {'alpha': alpha}
9276
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9277
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9278
    helper.append_op(
9279
        type='leaky_relu', inputs=inputs, outputs={'Out': out}, attrs=attrs)
9280 9281 9282 9283 9284
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
9285 9286 9287 9288
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

9289
    Args:
9290 9291 9292 9293
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

9294
    Returns:
9295
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
9296 9297 9298

    Examples:

9299 9300 9301
        .. code-block:: python 
 
            import paddle.fluid as fluid
9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
9314 9315
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9316
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9317 9318 9319 9320 9321 9322 9323 9324
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9325 9326
def flatten(x, axis=1, name=None):
    """
9327 9328 9329
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
9330

H
haowang101779990 已提交
9331
    For Example:
M
minqiyang 已提交
9332

H
haowang101779990 已提交
9333
    .. code-block:: text
9334

H
haowang101779990 已提交
9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9356 9357

    Args:
9358 9359
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
9360 9361
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9362
                    The value for axis must be in the range [0, R], where R
9363 9364 9365
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
9366 9367

    Returns:
H
haowang101779990 已提交
9368 9369 9370
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9371
                  inner dimension of the output. A Tensor with type same as input x.
9372 9373 9374

    Raises:
        ValueError: If x is not a variable.
9375
        ValueError: If axis is not in range [0, rank(x)].
9376 9377 9378 9379 9380

    Examples:

        .. code-block:: python

9381
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9382
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9383
            # x shape is [4, 4, 3]
9384
            out = fluid.layers.flatten(x=x, axis=2)
9385
            # out shape is [16, 3]
9386 9387 9388 9389 9390 9391 9392 9393 9394
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9395 9396
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9397
    helper.append_op(
9398
        type='flatten2',
9399
        inputs={"X": x},
9400 9401
        outputs={'Out': out,
                 'XShape': x_shape},
9402 9403
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9404 9405 9406


def stack(x, axis=0):
S
sneaxiy 已提交
9407
    """
9408

9409
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9410

C
chengduozh 已提交
9411 9412 9413
    .. code-block:: text

        Case 1:
9414

C
chengduozh 已提交
9415
          Input:
9416
            x[0].shape = [1, 2]
C
chengduozh 已提交
9417
            x[0].data = [ [1.0 , 2.0 ] ]
9418
            x[1].shape = [1, 2]
C
chengduozh 已提交
9419
            x[1].data = [ [3.0 , 4.0 ] ]
9420
            x[2].shape = [1, 2]
C
chengduozh 已提交
9421 9422 9423 9424 9425 9426
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9427
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9428 9429 9430
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9431

C
chengduozh 已提交
9432 9433

        Case 2:
9434 9435 9436 9437


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9438
            x[0].data = [ [1.0 , 2.0 ] ]
9439
            x[1].shape = [1, 2]
C
chengduozh 已提交
9440
            x[1].data = [ [3.0 , 4.0 ] ]
9441
            x[2].shape = [1, 2]
C
chengduozh 已提交
9442
            x[2].data = [ [5.0 , 6.0 ] ]
9443

C
chengduozh 已提交
9444 9445 9446 9447 9448

          Attrs:
            axis = 1 or axis = -2

          Output:
9449
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9450 9451 9452
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9453

C
chengduozh 已提交
9454

S
sneaxiy 已提交
9455
    Args:
9456 9457 9458 9459 9460 9461 9462 9463 9464
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9465

S
sneaxiy 已提交
9466
    Returns:
9467
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9468

9469 9470 9471
    Examples:
        .. code-block:: python

9472
            import paddle.fluid as fluid
9473
            import paddle.fluid.layers as layers
9474 9475 9476 9477 9478 9479 9480 9481 9482 9483
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9484

S
sneaxiy 已提交
9485 9486
    """

X
Xin Pan 已提交
9487 9488 9489 9490 9491
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]
X
Xin Pan 已提交
9492
    out = helper.create_variable_for_type_inference(x[0].dtype)
9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510
    if not in_dygraph_mode() and \
            x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})
9511

X
Xin Pan 已提交
9512
    return out
D
dzhwinter 已提交
9513 9514


J
Jiawei Wang 已提交
9515
@templatedoc(op_type="filter_by_instag")
Y
yaoxuefeng 已提交
9516
def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0):
J
Jiawei Wang 已提交
9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.
Y
yaoxuefeng 已提交
9553 9554
        out_val_if_empty(Int64): If the output after filter is empty, this value
                        will be set to Output tensor.
J
Jiawei Wang 已提交
9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
Y
yaoxuefeng 已提交
9582 9583
        attrs={'is_lod': is_lod,
               'out_val_if_empty': out_val_if_empty})
J
Jiawei Wang 已提交
9584 9585 9586 9587

    return [out, loss_weight]


D
dzhwinter 已提交
9588 9589 9590 9591
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9592
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9593

D
dzhwinter 已提交
9594 9595 9596
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9597
    raised.
D
dzhwinter 已提交
9598 9599

    Args:
9600
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9601 9602
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9603

D
dzhwinter 已提交
9604
    Returns:
9605 9606 9607 9608
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9609

9610 9611 9612 9613
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9614 9615
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9616

9617
    """
D
dzhwinter 已提交
9618 9619 9620 9621 9622 9623 9624 9625
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9626
    for _ in range(num):
X
Xin Pan 已提交
9627
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9628 9629 9630 9631 9632 9633 9634 9635

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9636 9637 9638


def expand(x, expand_times, name=None):
9639 9640 9641 9642
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9643 9644 9645 9646 9647 9648
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9649

W
whs 已提交
9650 9651 9652 9653
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9654

W
whs 已提交
9655
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9656

W
whs 已提交
9657
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9658

W
whs 已提交
9659 9660 9661 9662
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9663

W
whs 已提交
9664
    Args:
9665 9666 9667 9668 9669
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9670 9671

    Returns:
9672
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9673

9674 9675 9676
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9677 9678 9679

    Examples:
        .. code-block:: python
L
liym27 已提交
9680

W
wangchaochaohu 已提交
9681
            import paddle.fluid as fluid
L
liym27 已提交
9682 9683 9684 9685

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9686
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9687 9688 9689 9690 9691

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9692
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9693
    """
9694 9695
    if in_dygraph_mode():
        if isinstance(expand_times, (list, tuple)):
L
Leo Chen 已提交
9696
            if utils._contain_var(expand_times):
9697 9698 9699 9700 9701 9702 9703 9704
                raise TypeError(
                    "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

9705
        return core.ops.expand(x, 'expand_times', expand_times)
9706

9707 9708
    inputs = {"X": [x]}
    attrs = {}
9709 9710
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
9711
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9712 9713 9714
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9715

W
whs 已提交
9716
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9717 9718 9719 9720 9721 9722 9723 9724 9725

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
T
tianshuo78520a 已提交
9726
                    "Each element given in expand_times must not be negative.")
L
liym27 已提交
9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9741

L
Leo Chen 已提交
9742 9743 9744 9745 9746 9747 9748 9749
    if isinstance(expand_times, Variable):
        expand_times.stop_gradient = True
        inputs['ExpandTimes'] = expand_times
    elif isinstance(expand_times, (list, tuple)):
        attrs['expand_times'] = get_attr_expand_times(expand_times)
        if utils._contain_var(expand_times):
            inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                expand_times)
9750

L
liym27 已提交
9751 9752
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9753
    helper.append_op(
9754
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9755
    return out
S
sneaxiy 已提交
9756 9757


9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9828 9829 9830
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9831
@templatedoc()
G
fix  
gongweibao 已提交
9832 9833 9834 9835 9836 9837 9838 9839 9840
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9841 9842 9843 9844 9845 9846
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9847

9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9874
    Args:
9875 9876 9877 9878 9879 9880 9881 9882
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9883
    Returns:
9884
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9885

9886 9887 9888
    Examples:
        .. code-block:: python

9889
            import paddle.fluid as fluid
9890 9891 9892 9893
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9894

9895 9896 9897 9898
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9899 9900 9901
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9902
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9919 9920


G
gongweibao 已提交
9921
@templatedoc()
X
Xin Pan 已提交
9922
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9923
    """
9924
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9925 9926

    Args:
9927 9928 9929 9930 9931 9932 9933 9934 9935
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9936 9937

    Returns:
9938
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9939

9940
    Examples:
9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9956

9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9975 9976 9977
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9978
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9979 9980 9981 9982 9983 9984 9985 9986 9987 9988
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9989
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9990 9991 9992 9993 9994
        })

    return out


G
gongweibao 已提交
9995
@templatedoc()
G
fix  
gongweibao 已提交
9996
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9997
    """
R
ruri 已提交
9998
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9999

R
ruri 已提交
10000 10001 10002 10003 10004
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
10005
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
10006 10007

    Returns:
R
ruri 已提交
10008
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
10009

10010 10011 10012
    Examples:
        .. code-block:: python

10013
            import paddle.fluid as fluid
R
ruri 已提交
10014
            x = fluid.data(
10015 10016
                name="X",
                shape=[13, 11],
R
ruri 已提交
10017
                dtype='float32')
10018

Y
Yibing Liu 已提交
10019
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
10020 10021 10022
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
10023
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
10035
@templatedoc()
G
fix  
gongweibao 已提交
10036 10037 10038 10039 10040 10041 10042 10043 10044
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10045
    ${comment}
G
fix  
gongweibao 已提交
10046 10047

    Args:
G
gongweibao 已提交
10048 10049
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
10050 10051 10052 10053 10054 10055
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
10056 10057

    Returns:
G
gongweibao 已提交
10058
        out (Variable): ${out_comment}
10059 10060 10061 10062

    Examples:
        .. code-block:: python

10063
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10064
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
10065

Y
Yibing Liu 已提交
10066
            out = fluid.layers.gaussian_random_batch_size_like(
10067
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10068 10069 10070
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10071
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10090
@templatedoc()
X
Xin Pan 已提交
10091
def sum(x):
G
fix  
gongweibao 已提交
10092
    """
G
gongweibao 已提交
10093
    ${comment}
10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
10124 10125

    Args:
10126
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
10127 10128

    Returns:
10129
        Variable: ${out_comment}
10130 10131 10132 10133

    Examples:
        .. code-block:: python

10134
            import paddle.fluid as fluid
10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
10157 10158
    """

10159
    return paddle.elementwise_sum(x)
G
fix  
gongweibao 已提交
10160 10161


G
gongweibao 已提交
10162
@templatedoc()
G
fix  
gongweibao 已提交
10163 10164
def slice(input, axes, starts, ends):
    """
10165
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
10166
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
10167 10168 10169 10170 10171 10172 10173
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
10174
    For slicing to the end of a dimension with unknown size, it is recommended
10175
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
10176 10177 10178
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10179

10180 10181 10182 10183 10184 10185 10186 10187
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
10188

10189 10190 10191 10192 10193
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
10194
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
10195
            Then:
10196
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
10197
    Args:
10198 10199 10200 10201 10202 10203 10204 10205 10206
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
10207 10208

    Returns:
10209 10210 10211 10212 10213
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
10214

10215 10216 10217
    Examples:
        .. code-block:: python

10218
            import paddle.fluid as fluid
10219

10220 10221
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
10222

10223 10224 10225 10226 10227 10228
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
10229
            # sliced_1 is input[0:3, 0:2, 2:4].
10230 10231 10232 10233 10234

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
10235
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
10236
    """
10237 10238 10239
    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        if isinstance(starts, (list, tuple)):
L
Leo Chen 已提交
10240
            if utils._contain_var(starts):
10241 10242 10243 10244 10245 10246 10247 10248 10249
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
L
Leo Chen 已提交
10250
            if utils._contain_var(ends):
10251 10252 10253 10254 10255 10256 10257 10258
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

10259 10260
        return core.ops.slice(input, 'axes', axes, 'starts', starts, 'ends',
                              ends, 'infer_flags', infer_flags)
10261

10262 10263 10264 10265 10266 10267 10268
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
10269
    helper = LayerHelper('slice', **locals())
10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

10288 10289 10290 10291 10292 10293 10294
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
10295
        if utils._contain_var(starts):
10296 10297 10298 10299 10300 10301 10302
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
10303 10304
        else:
            attrs['starts'] = starts
10305 10306 10307 10308 10309 10310 10311 10312

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
10313
        if utils._contain_var(ends):
10314 10315 10316 10317 10318 10319 10320
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
10321 10322 10323
        else:
            attrs['ends'] = ends

10324 10325
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
10326 10327
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10328
    helper.append_op(
10329
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
10330 10331 10332 10333

    return out


W
wangchaochaohu 已提交
10334 10335 10336
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
10350 10351 10352 10353 10354 10355 10356 10357 10358

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
10359
                strides = [1, 1]
W
wangchaochaohu 已提交
10360
            Then:
10361
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
10362 10363 10364 10365 10366
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10367
                starts = [0, 1]
W
wangchaochaohu 已提交
10368 10369 10370 10371 10372 10373 10374 10375 10376
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10377
                starts = [0, 1]
10378 10379
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10380
            Then:
10381 10382
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10395 10396

    Returns:
W
wangchaochaohu 已提交
10397 10398 10399 10400 10401 10402
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10403

W
wangchaochaohu 已提交
10404 10405 10406 10407 10408
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10409
            input = fluid.data(
W
wangchaochaohu 已提交
10410 10411
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10412 10413 10414 10415 10416
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10417 10418 10419 10420 10421
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10422 10423 10424 10425

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10426 10427
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10428
    """
10429 10430 10431 10432 10433 10434 10435 10436 10437 10438
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10439 10440
    helper = LayerHelper('strided_slice', **locals())

10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460
    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10461 10462 10463
            'axes': axes,
            'starts': starts,
            'ends': ends,
10464 10465 10466 10467 10468 10469 10470 10471 10472 10473
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
L
Leo Chen 已提交
10474
            if utils._contain_var(starts):
10475 10476 10477 10478 10479 10480 10481
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
L
Leo Chen 已提交
10482 10483
            else:
                attrs['starts'] = starts
10484 10485 10486 10487 10488 10489 10490

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
L
Leo Chen 已提交
10491
            if utils._contain_var(ends):
10492 10493 10494 10495 10496 10497 10498
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
L
Leo Chen 已提交
10499 10500 10501
            else:
                attrs['ends'] = ends

10502 10503 10504 10505 10506 10507
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
L
Leo Chen 已提交
10508
            if utils._contain_var(strides):
10509 10510 10511 10512 10513 10514 10515
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
L
Leo Chen 已提交
10516 10517
            else:
                attrs['strides'] = strides
10518 10519 10520 10521 10522
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10523 10524 10525 10526

    return out


G
fix  
gongweibao 已提交
10527 10528
def shape(input):
    """
C
chengduozh 已提交
10529 10530
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10531
    Get the shape of the input.
G
fix  
gongweibao 已提交
10532 10533

    Args:
10534
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10535 10536

    Returns:
10537
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10538

10539 10540 10541
    Examples:
        .. code-block:: python

10542
            import paddle.fluid as fluid
10543
            import numpy as np
10544

10545 10546 10547 10548 10549 10550 10551 10552 10553 10554
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10555 10556 10557
    """

    helper = LayerHelper('shape', **locals())
10558
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10559
    helper.append_op(
G
fix  
gongweibao 已提交
10560
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10561 10562

    return out
G
merge  
gongweibao 已提交
10563 10564


Z
zhoukunsheng 已提交
10565 10566
def rank(input):
    """
10567
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10568 10569

    Args:
10570
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10571 10572

    Returns:
10573
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10574 10575 10576 10577

    Examples:
        .. code-block:: python

10578 10579
            import paddle.fluid as fluid

10580 10581
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10582 10583 10584 10585 10586 10587 10588 10589
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10619 10620 10621 10622
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
10623

S
sneaxiy 已提交
10624 10625
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10626 10627 10628 10629
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
10630

S
sneaxiy 已提交
10631 10632
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10633
    name = helper.kwargs.get('name', None)
10634 10635 10636 10637 10638
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10639

S
sneaxiy 已提交
10640 10641 10642 10643 10644 10645 10646 10647 10648 10649
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10650
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10651
    """
10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10665 10666

    Args:
10667
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10668
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10669 10670 10671 10672
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10673 10674

    Returns:
10675
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10676 10677 10678 10679 10680

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10681 10682 10683 10684 10685 10686 10687 10688 10689
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10690

10691 10692
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10693 10694 10695 10696 10697 10698 10699 10700

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10701
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10714
    """
10715 10716 10717 10718 10719 10720 10721 10722

    if in_dygraph_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        out = core.ops.scale(x, 'scale',
                             float(_scale), 'bias',
                             float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

10723
    inputs = {'X': [x]}
10724 10725 10726 10727 10728
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
10729
        inputs['ScaleTensor'] = [scale]
10730 10731
    else:
        attrs['scale'] = float(scale)
10732
    helper = LayerHelper('scale', **locals())
10733 10734 10735 10736 10737
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
10738

S
sneaxiy 已提交
10739
    helper.append_op(
10740
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10741
    return helper.append_activation(out)
S
sneaxiy 已提交
10742 10743


X
Xin Pan 已提交
10744
def elementwise_add(x, y, axis=-1, act=None, name=None):
10745 10746 10747 10748 10749 10750 10751 10752 10753 10754
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10755 10756
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10757 10758
            }

10759 10760
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10761
        z = fluid.layers.elementwise_add(x, y)
10762
        # z = x + y
10763 10764 10765 10766 10767 10768

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10769
        print(z_value) # [3., 8., 6.]
10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10783 10784
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10785
        z = fluid.layers.elementwise_add(x, y, axis=1)
10786
        # z = x + y
10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10808 10809
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10810
        z = fluid.layers.elementwise_add(x, y, axis=3)
10811
        # z = x + y
10812 10813 10814 10815 10816 10817 10818 10819 10820

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10821 10822 10823 10824
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10825 10826 10827
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10828
def elementwise_div(x, y, axis=-1, act=None, name=None):
10829 10830 10831 10832 10833 10834 10835 10836 10837 10838
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10839 10840
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10841 10842
            }

10843 10844
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10845
        z = fluid.layers.elementwise_div(x, y)
10846
        # z = x / y
10847 10848 10849 10850 10851 10852

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10853
        print(z_value) # [2., 0.6, 2.]
10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10867 10868
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10869
        z = fluid.layers.elementwise_div(x, y, axis=1)
10870
        # z = x / y
10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10892 10893
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10894
        z = fluid.layers.elementwise_div(x, y, axis=3)
10895
        # z = x / y
10896 10897 10898 10899 10900 10901 10902 10903 10904

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10905 10906 10907 10908
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10909 10910 10911
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10912
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10913 10914 10915 10916 10917 10918 10919 10920 10921 10922
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10923 10924
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10925 10926
            }

10927 10928
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10929
        z = fluid.layers.elementwise_sub(x, y)
10930
        # z = x - y
10931 10932 10933 10934 10935 10936

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10937
        print(z_value) # [1., -2., 2.]
10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10951 10952
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10953
        z = fluid.layers.elementwise_sub(x, y, axis=1)
10954
        # z = x - y
10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10976 10977
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10978
        z = fluid.layers.elementwise_sub(x, y, axis=3)
10979
        # z = x - y
10980 10981 10982 10983 10984 10985 10986 10987 10988

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10989 10990 10991 10992
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10993 10994 10995
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10996
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10997 10998 10999 11000 11001 11002 11003 11004 11005 11006
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11007 11008
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11009 11010
            }

11011 11012
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11013
        z = fluid.layers.elementwise_mul(x, y)
11014
        # z = x * y
11015 11016 11017 11018 11019 11020

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

11021
        print(z_value) # [2., 15., 8.]
11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11035 11036
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11037
        z = fluid.layers.elementwise_mul(x, y, axis=1)
11038
        # z = x * y
11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
11060 11061
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
11062
        z = fluid.layers.elementwise_mul(x, y, axis=3)
11063
        # z = x * y
11064 11065 11066 11067 11068 11069 11070 11071 11072

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
11073 11074 11075 11076
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
11077 11078 11079
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11080
def elementwise_max(x, y, axis=-1, act=None, name=None):
11081 11082 11083 11084 11085 11086 11087 11088 11089 11090
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11091 11092
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11093 11094
            }

11095 11096
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11118 11119
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
11131 11132 11133 11134
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
11135 11136 11137
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11138
def elementwise_min(x, y, axis=-1, act=None, name=None):
11139 11140 11141 11142 11143 11144 11145 11146 11147 11148
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11149 11150
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11151 11152
            }

11153 11154
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11155
        z = fluid.layers.elementwise_min(x, y)
11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11175 11176
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11177
        z = fluid.layers.elementwise_min(x, y, axis=1)
11178 11179 11180 11181 11182 11183 11184 11185 11186

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """
11187 11188 11189
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_min')
11190

S
sneaxiy 已提交
11191 11192 11193
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11194
def elementwise_pow(x, y, axis=-1, act=None, name=None):
11195 11196 11197 11198 11199 11200 11201 11202 11203 11204
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11205 11206
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11207 11208
            }

11209 11210
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11211 11212 11213 11214 11215 11216 11217 11218 11219
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
11220 11221 11222
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
11223 11224 11225
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11226
def elementwise_mod(x, y, axis=-1, act=None, name=None):
11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
11252 11253 11254 11255
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

11256 11257 11258 11259
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
11285 11286 11287 11288
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

11289 11290 11291
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11292
for func in [
11293 11294 11295 11296
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
11297 11298
        elementwise_max,
        elementwise_pow,
11299
        elementwise_min,
11300 11301
        elementwise_mod,
        elementwise_floordiv,
11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

11319
for func in []:
S
sneaxiy 已提交
11320 11321 11322 11323
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11324 11325
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11326
        ])
11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11364 11365


11366
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11367 11368
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11369 11370
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11371 11372

    if out is None:
11373 11374 11375 11376 11377
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)
M
minqiyang 已提交
11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11390
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11391
    """
W
Wilber 已提交
11392 11393 11394 11395 11396 11397 11398 11399
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11400 11401 11402 11403

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11404 11405
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11406 11407

    Returns:
W
Wilber 已提交
11408
        ${out_type}: ${out_comment}
11409 11410 11411 11412

    Examples:
        .. code-block:: python

11413
            import paddle.fluid as fluid
W
Wilber 已提交
11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11432 11433 11434 11435 11436 11437 11438
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11439
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11440
    """
W
Wilber 已提交
11441 11442 11443 11444 11445 11446 11447 11448
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11449 11450 11451 11452

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11453 11454
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11455 11456

    Returns:
W
Wilber 已提交
11457
        ${out_type}: ${out_comment}
11458 11459 11460 11461

    Examples:
        .. code-block:: python

11462
            import paddle.fluid as fluid
W
Wilber 已提交
11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11481 11482 11483 11484 11485 11486 11487
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11488
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11489
    """
W
Wilber 已提交
11490 11491 11492 11493 11494 11495 11496 11497
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11498 11499 11500 11501

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11502 11503
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11504 11505

    Returns:
W
Wilber 已提交
11506
        ${out_type}: ${out_comment}
11507 11508 11509 11510

    Examples:
        .. code-block:: python

11511
            import paddle.fluid as fluid
W
Wilber 已提交
11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11530 11531 11532 11533 11534 11535 11536
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11537
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11538
    """
W
Wilber 已提交
11539 11540 11541 11542 11543 11544 11545 11546
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11547 11548 11549

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11550 11551
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11552 11553

    Returns:
W
Wilber 已提交
11554
        ${out_type}: ${out_comment}
11555 11556 11557 11558

    Examples:
        .. code-block:: python

11559
            import paddle.fluid as fluid
W
Wilber 已提交
11560 11561 11562 11563 11564
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
T
tianshuo78520a 已提交
11565
            # The comment lists another avaliable method.
W
Wilber 已提交
11566 11567 11568 11569 11570 11571 11572 11573 11574 11575
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11576 11577 11578 11579
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11580 11581 11582 11583 11584 11585 11586 11587 11588


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11589 11590 11591 11592 11593
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11594 11595

    Returns:
S
SunGaofeng 已提交
11596 11597 11598 11599
        ${out_comment}

    Return Type:
        ${out_type}
11600 11601 11602 11603

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11604
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11605
            input = fluid.data(
11606 11607
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11608 11609 11610 11611 11612
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11613 11614
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11615 11616 11617

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11637 11638 11639
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11640 11641

    Returns:
W
wangguanzhong 已提交
11642 11643
        Variable:

11644
        out(${out_type}): ${out_comment}
11645

W
wangguanzhong 已提交
11646

11647 11648 11649
    Examples:
        .. code-block:: python

11650
            import paddle.fluid as fluid
11651 11652
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11653
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11654 11655 11656 11657 11658
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11659 11660
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11661 11662 11663

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11664 11665 11666 11667 11668 11669 11670 11671

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11685 11686 11687 11688

    Examples:
        .. code-block:: python

11689
            import paddle.fluid as fluid
11690 11691 11692
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11693
    """
11694
    if in_dygraph_mode():
11695
        return core.ops.mean(x)
X
Xin Pan 已提交
11696 11697

    helper = LayerHelper("mean", **locals())
11698
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
11699 11700 11701 11702 11703
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
X
Xin Pan 已提交
11704 11705 11706 11707 11708 11709 11710

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11722 11723 11724 11725

    Examples:
        .. code-block:: python

11726
            import paddle.fluid as fluid
11727 11728 11729 11730 11731
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11744 11745
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11746 11747 11748 11749 11750 11751 11752 11753
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11754 11755

    Args:
L
liu zhengxi 已提交
11756 11757 11758 11759 11760
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11761 11762

    Returns:
L
liu zhengxi 已提交
11763
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11764 11765

    Examples:
L
liu zhengxi 已提交
11766
        ..  code-block:: python
11767 11768 11769 11770 11771 11772 11773 11774 11775
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11776
    """
11777
    if in_dygraph_mode():
11778 11779
        return core.ops.mul(x, y, 'x_num_col_dims', x_num_col_dims,
                            'y_num_col_dims', y_num_col_dims)
X
Xin Pan 已提交
11780

11781 11782
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
11783
    helper = LayerHelper("mul", **locals())
11784 11785
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
11786 11787 11788 11789 11790
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
X
Xin Pan 已提交
11791 11792

    helper.append_op(
11793 11794
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
X
Xin Pan 已提交
11795 11796 11797 11798
    return out


@templatedoc()
11799
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11800 11801 11802 11803 11804
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11805 11806
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11807 11808 11809
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11810 11811

    Returns:
11812
        Variable: ${out_comment}
J
jerrywgz 已提交
11813

11814 11815
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11816
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11817

J
jerrywgz 已提交
11818 11819 11820
    Examples:
        .. code-block:: python

11821
            import paddle.fluid as fluid
11822
            input = fluid.data(
J
jerrywgz 已提交
11823
                name='data', 
11824
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11825 11826
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11827 11828
    """
    helper = LayerHelper("maxout", **locals())
11829 11830 11831 11832 11833 11834
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11835

11836 11837 11838 11839 11840
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
X
Xin Pan 已提交
11841 11842 11843 11844

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11845 11846
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11847 11848
        outputs={"Out": out})
    return out
11849 11850


J
JiabinYang 已提交
11851
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11852
    """
J
JiabinYang 已提交
11853
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11854

11855 11856 11857
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11858
    The attr blocksize indicates the input block size.
11859

T
tianshuo78520a 已提交
11860
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
11861 11862
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11863

J
JiabinYang 已提交
11864 11865 11866 11867 11868
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11886

J
JiabinYang 已提交
11887
    Args:
11888 11889 11890 11891 11892 11893
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11894

11895 11896 11897 11898
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11899 11900

    Raises:
11901
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11902 11903 11904

    Examples:
        .. code-block:: python
11905
    
11906 11907
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11908

11909 11910
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11911
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11912
                x=data, blocksize=2)
11913

11914
            exe = fluid.Executor(fluid.CPUPlace())
11915
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11916 11917 11918 11919 11920 11921 11922

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11923
            out_main = exe.run(fluid.default_main_program(),
11924 11925 11926 11927 11928 11929 11930 11931
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11932

J
JiabinYang 已提交
11933 11934
    """

J
JiabinYang 已提交
11935
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11936

J
JiabinYang 已提交
11937 11938
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11939

11940 11941 11942 11943 11944 11945
    if name is None:
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
J
JiabinYang 已提交
11946 11947

    helper.append_op(
J
JiabinYang 已提交
11948
        type="space_to_depth",
J
JiabinYang 已提交
11949
        inputs={"X": x},
J
JiabinYang 已提交
11950
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11951
        outputs={"Out": out})
J
JiabinYang 已提交
11952 11953
    return out

J
JiabinYang 已提交
11954

11955 11956 11957 11958 11959 11960
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11961 11962 11963 11964 11965
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11966

11967 11968 11969
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11970
            is applied in the second dimension.The data type is float32 or float64.
11971 11972
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11973
            the input.The data type is float32 or float64.
11974 11975
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11976
            The data type is float32 or float64.
11977 11978 11979 11980 11981
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11982 11983
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11984
        act (str, default None): Activation to be applied to the output of this layer.
11985 11986

    Returns:
L
LielinJiang 已提交
11987
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11988 11989 11990

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11991 11992

            import numpy as np
B
Bai Yifan 已提交
11993
            import paddle.fluid as fluid
L
LielinJiang 已提交
11994 11995 11996 11997 11998 11999 12000 12001 12002 12003

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
12004
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
12005 12006 12007 12008 12009 12010 12011 12012 12013 12014
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
12015

12016 12017
    """
    helper = LayerHelper("affine_channel", **locals())
12018 12019 12020 12021 12022 12023

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
12024 12025 12026 12027 12028 12029 12030 12031

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
12032
    return helper.append_activation(out)
12033 12034


B
barrierye 已提交
12035
def similarity_focus(input, axis, indexes, name=None):
12036
    """
B
barrierye 已提交
12037
    SimilarityFocus Operator
B
barrierye 已提交
12038 12039

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
12040

12041 12042 12043
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
12044
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
12045 12046 12047 12048 12049 12050 12051
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
12052
       each index.
B
barrierye 已提交
12053 12054 12055 12056
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
12106
    Args:
12107
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
12108 12109
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
12110
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
12111
            1, 2 or 3.
B
barrierye 已提交
12112
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
12113 12114

    Returns:
H
haowang101779990 已提交
12115 12116
        Variable: A tensor variable with the same shape and same type \
                  as the input.
12117

B
barrierye 已提交
12118 12119
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
12120

12121
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
12122
            data = fluid.data(
Y
Yibing Liu 已提交
12123 12124
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

12137 12138 12139 12140 12141
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
12142 12143 12144 12145 12146 12147 12148
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
12149 12150


M
minqiyang 已提交
12151 12152
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
12153
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
12154 12155
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
12156 12157

    Args:
Z
zhupengyang 已提交
12158 12159 12160 12161 12162 12163
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
12164 12165

    Returns:
Z
zhupengyang 已提交
12166
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
12167 12168

    Examples:
Z
zhupengyang 已提交
12169
        .. code-block:: python
H
haowang101779990 已提交
12170

12171
            import paddle.fluid as fluid
Z
zhupengyang 已提交
12172
            import numpy as np
12173

Z
zhupengyang 已提交
12174
            place = fluid.core.CPUPlace()
12175

Z
zhupengyang 已提交
12176 12177
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
12178

Z
zhupengyang 已提交
12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
12196 12197
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
12198 12199
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
12200 12201 12202 12203 12204 12205 12206
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12207 12208


D
dengkaipeng 已提交
12209
@templatedoc()
12210 12211
def grid_sampler(x, grid, name=None):
    """
12212
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
12213
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
12214 12215
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
12216 12217
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
12218 12219
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
12220

H
haowang101779990 已提交
12221
    .. code-block:: text
12222

H
haowang101779990 已提交
12223 12224
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12225

K
Kaipeng Deng 已提交
12226 12227 12228 12229
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12230

H
haowang101779990 已提交
12231 12232 12233
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12234

H
haowang101779990 已提交
12235 12236 12237 12238 12239 12240 12241 12242 12243
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12244

H
haowang101779990 已提交
12245 12246 12247 12248
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12249

H
haowang101779990 已提交
12250 12251 12252 12253
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12254

H
haowang101779990 已提交
12255 12256 12257 12258
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12259

H
haowang101779990 已提交
12260 12261
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12262 12263

    Args:
K
Kaipeng Deng 已提交
12264 12265 12266 12267 12268 12269 12270 12271 12272
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
12273 12274

    Returns:
H
haowang101779990 已提交
12275
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
12276 12277
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
12278

H
haowang101779990 已提交
12279 12280 12281 12282
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12283 12284
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
12285 12286
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
12287 12288
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12289
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12290

D
dengkaipeng 已提交
12291 12292 12293 12294 12295 12296 12297 12298 12299
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12300
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12301 12302
    ipts = {'X': x, 'Grid': grid}

12303
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12304 12305 12306
    return out


G
gmcather 已提交
12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
12320
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
12321
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
12322 12323 12324 12325 12326 12327 12328
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
12329 12330 12331 12332 12333 12334 12335

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12336
          import paddle.fluid as fluid
12337 12338
          label = fluid.data(name='label', shape=[None, 1], dtype='float32')
          prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
G
gmcather 已提交
12339 12340 12341 12342
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

12343 12344 12345 12346 12347
    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
G
gmcather 已提交
12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
12360 12361
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
12362

G
Guo Sheng 已提交
12363 12364
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12365

G
Guo Sheng 已提交
12366
    The formula is as follows:
G
gmcather 已提交
12367 12368

    .. math::
H
haowang101779990 已提交
12369 12370 12371
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12372 12373

    Where:
G
Guo Sheng 已提交
12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12391 12392

    Returns:
G
Guo Sheng 已提交
12393
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12394 12395 12396 12397

    Examples:
        .. code-block:: python

12398 12399
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12400
          tensor = fluid.data(
12401
              name='tensor',
G
Guo Sheng 已提交
12402 12403
              shape=[None, 64, 512],
              dtype='float32')
12404 12405
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12406

G
gmcather 已提交
12407 12408 12409 12410
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

12411 12412 12413 12414
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
G
gmcather 已提交
12415 12416 12417 12418 12419 12420 12421 12422

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12423 12424 12425 12426 12427 12428 12429 12430 12431 12432


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12433
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12434

Q
Qiao Longfei 已提交
12435
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12436 12437 12438
    For example:

    .. math::
H
haowang101779990 已提交
12439
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12440

Q
Qiao Longfei 已提交
12441
    In this formula:
12442 12443
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12444
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12445
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12446 12447 12448
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12449 12450 12451 12452
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12453
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12454 12455 12456 12457 12458 12459 12460 12461 12462
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12463
    Returns:
Y
Yibing Liu 已提交
12464
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12465 12466 12467 12468

    Examples:
        .. code-block:: python

12469
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12470 12471
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12472
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12473 12474
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12475
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12476 12477 12478 12479

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12480
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
12481 12482 12483 12484 12485

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
Q
Qiao Longfei 已提交
12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12498 12499 12500 12501 12502


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12519 12520

    Args:
12521 12522 12523
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12524 12525

    Returns:
12526
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12527 12528 12529 12530 12531 12532 12533 12534

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12535 12536 12537 12538 12539 12540 12541 12542 12543 12544
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12545 12546


S
shippingwang 已提交
12547
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12548
    """
S
shippingwang 已提交
12549 12550 12551 12552 12553 12554
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12555
    
S
shippingwang 已提交
12556
    .. code-block:: text
12557

S
shippingwang 已提交
12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12586
    Args: 
S
shippingwang 已提交
12587
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
T
tianshuo78520a 已提交
12588
        group(int): Indicating the counts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12589 12590

    Returns:
S
shippingwang 已提交
12591 12592
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12593 12594

    Raises:
S
shippingwang 已提交
12595
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12596 12597 12598

    Examples:
        .. code-block:: python
12599

12600
            import paddle.fluid as fluid
R
ruri 已提交
12601
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12602
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12603 12604 12605
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12606
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12607 12608 12609 12610 12611 12612 12613 12614 12615

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12616
    return out
S
Add  
shippingwang 已提交
12617 12618


12619
@templatedoc()
D
dengkaipeng 已提交
12620
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12621 12622 12623 12624 12625 12626 12627 12628
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12629
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12630 12631 12632
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12633 12634 12635

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12636
        same shape and same data type as the input.
12637 12638 12639 12640 12641 12642 12643

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12644
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12645
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12646
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12659 12660
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12661 12662 12663
    return out


S
sneaxiy 已提交
12664
class PyFuncRegistry(object):
S
sneaxiy 已提交
12665 12666 12667
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12668
        if func is None or not callable(func):
S
sneaxiy 已提交
12669 12670 12671
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12672
        # find named args using reflection
S
sneaxiy 已提交
12673 12674 12675 12676 12677 12678 12679
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12680 12681 12682
        '''
        Why record self here?

M
minqiyang 已提交
12683 12684
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12685
           to find the registered function corresponding
M
minqiyang 已提交
12686
           to :code:`idx`.
S
sneaxiy 已提交
12687

M
minqiyang 已提交
12688 12689
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12690
           whose reference count is 1 would cause
M
minqiyang 已提交
12691
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12692 12693
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12694
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12709 12710 12711 12712 12713 12714 12715 12716 12717
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12718

S
sneaxiy 已提交
12719 12720
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12721 12722

        ret = []
S
sneaxiy 已提交
12723 12724 12725
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12726 12727
                continue

S
sneaxiy 已提交
12728 12729
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12730

S
sneaxiy 已提交
12731 12732 12733
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12734

S
sneaxiy 已提交
12735
        return tuple(ret)
S
sneaxiy 已提交
12736 12737


S
sneaxiy 已提交
12738 12739 12740
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12741 12742 12743 12744 12745 12746 12747
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12748
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12749
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12777 12778 12779 12780 12781
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12782 12783 12784 12785 12786
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12787 12788
    
    Returns: 
12789
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12790 12791

    Examples:
12792
        .. code-block:: python
12793 12794
	    
            # example 1:
12795 12796 12797
            import paddle.fluid as fluid
            import six

12798 12799
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12800 12801 12802
            def tanh(x):
                return np.tanh(x)

12803 12804 12805
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12806 12807
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12808 12809
            
            # Creates a forward function for debugging running networks(print value)
12810 12811
            def debug_func(x):
                print(x)
12812 12813 12814 12815
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12829
                    # User-defined debug functions that print out the input LodTensor
12830 12831 12832 12833 12834
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12892
    """
S
sneaxiy 已提交
12893
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12894 12895 12896
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12897
        x = [x]
12898 12899 12900
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12901
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12902

S
sneaxiy 已提交
12903 12904 12905
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12906
        out_list = [out]
12907 12908
    elif isinstance(out, tuple):
        out_list = list(out)
12909 12910 12911
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
12912 12913
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12914

S
sneaxiy 已提交
12915 12916
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12917
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12918 12919

    for each_out in out_list:
S
sneaxiy 已提交
12920 12921
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12922 12923
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12924

S
sneaxiy 已提交
12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12940 12941 12942 12943

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12944 12945
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12946 12947 12948
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12949
        })
S
sneaxiy 已提交
12950
    return out
S
sneaxiy 已提交
12951 12952 12953


# For debug usage
S
sneaxiy 已提交
12954 12955 12956 12957
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12969
    Parameters:
12970
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12971
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12972 12973 12974
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12975 12976
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12977
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12978 12979 12980 12981 12982
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12983 12984

    Returns:
S
SunGaofeng 已提交
12985 12986 12987 12988
        ${out_comment}.

    Return Type:
        Variable
12989 12990 12991 12992

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12993
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12994 12995
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12996
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13022 13023 13024 13025 13026 13027 13028 13029


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
13030
               batch_roi_nums=None,
13031 13032
               name=None):
    """
13033
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
13034 13035

    Args:
13036
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
13037 13038 13039
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
13040 13041 13042 13043 13044
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
13045 13046 13047 13048 13049 13050
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
13051
        batch_roi_nums (Variable): The number of roi for each image in batch. It 
T
tianshuo78520a 已提交
13052
                         should be 1-D Tensor, with shape [N] and dtype int64, 
13053 13054
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
13055 13056 13057
        name (str, default None): The name of this operation.

    Returns:
13058
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
13059 13060 13061 13062

    Examples:
        .. code-block:: python

13063
            ## prroi_pool without batch_roi_num
13064
            import paddle.fluid as fluid
13065 13066
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
13067
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
13068 13069 13070 13071 13072 13073 13074 13075 13076
            
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
13088 13089 13090
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
13091 13092
    helper.append_op(
        type='prroi_pool',
13093
        inputs=inputs_op,
13094 13095 13096 13097 13098 13099 13100
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13101

M
minqiyang 已提交
13102

R
ruri 已提交
13103 13104 13105
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
13106
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
13107 13108 13109 13110 13111 13112 13113
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
13114
    Parameters:
R
ruri 已提交
13115

R
ruri 已提交
13116 13117
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
13118 13119

    Returns:
13120
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13121 13122 13123 13124 13125 13126 13127

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13163 13164 13165 13166 13167
def fsp_matrix(x, y):
    """

    **FSP matrix op**

13168
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

13180 13181 13182
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
13183
                      The y_channel can be different with the x_channel of Input(X)
13184 13185
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
13186 13187 13188 13189

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
13190 13191
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
13192 13193 13194 13195 13196

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13197
            import paddle.fluid as fluid
B
Bai Yifan 已提交
13198
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
13199 13200 13201 13202
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13203 13204 13205 13206 13207 13208 13209 13210
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13211 13212 13213 13214


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13215

H
heqiaozhi 已提交
13216
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13217

Z
zhoushiyu 已提交
13218
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
13219

Z
zhoushiyu 已提交
13220 13221
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
13222
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
13223 13224
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
13225

Z
zhoushiyu 已提交
13226 13227 13228 13229 13230 13231 13232
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
13233

H
heqiaozhi 已提交
13234
    Returns:
H
fix doc  
heqiaozhi 已提交
13235

Z
zhoushiyu 已提交
13236 13237
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
13238

H
heqiaozhi 已提交
13239
    Examples:
H
fix doc  
heqiaozhi 已提交
13240

H
heqiaozhi 已提交
13241
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13242

13243
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
13244 13245
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
13246 13247 13248 13249 13250 13251 13252 13253
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13254

H
heqiaozhi 已提交
13255 13256 13257 13258 13259 13260 13261 13262 13263
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13264
    return out
Z
zhoukunsheng 已提交
13265 13266 13267 13268 13269 13270 13271


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
13272
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
13273 13274

    Returns:
13275
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
13276 13277 13278 13279

    Examples:
        .. code-block:: python

13280
             import paddle.fluid as fluid
13281 13282 13283
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13284
             # condition is a tensor [True, False, True]
13285 13286 13287
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13288 13289

             # condition is a tensor [[True, False], [False, True]]
13290 13291 13292
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13293 13294

             # condition is a tensor [False, False, False]
13295 13296 13297 13298
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13299
    """
13300
    helper = LayerHelper("where_index", **locals())
Z
zhoukunsheng 已提交
13301 13302 13303 13304 13305

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
13306 13307 13308
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]})
Z
zhoukunsheng 已提交
13309
    return out
Z
zhoukunsheng 已提交
13310 13311 13312 13313


def sign(x):
    """
13314
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
13315 13316

    Args:
13317 13318
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
13319 13320

    Returns:
13321
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
13322 13323 13324 13325

    Examples:
        .. code-block:: python

13326 13327 13328
          import paddle.fluid as fluid
          import numpy as np

13329 13330
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
13331 13332 13333
    """

    helper = LayerHelper("sign", **locals())
13334 13335 13336 13337
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
13338 13339 13340 13341 13342
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13343 13344


Z
zhoukunsheng 已提交
13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13384 13385
def unique_with_counts(x, dtype='int32'):
    """
T
tianshuo78520a 已提交
13386
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
13387
    and an index tensor pointing to this unique tensor. 
13388

13389
    **NOTICE**: This op support the variable type of Tensor only.
13390 13391

    Args:
13392 13393
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
13394

13395 13396 13397 13398
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
13399
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
13400
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13401 13402 13403 13404 13405 13406 13407 13408 13409

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13410
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13453
                    modulated=True,
13454 13455
                    name=None):
    """
13456
    **Deformable Convolution op**
13457 13458 13459

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13460 13461 13462
   
    
    Deformable Convolution v2: 
13463 13464 13465 13466
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13467 13468

    Deformable Convolution v1:
13469
    
13470 13471 13472 13473 13474
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13475
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13476
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13501 13502
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13503
        offset (Variable): The input coordinate offset of deformable convolution layer.
13504
            A Tensor with type float32, float64.
13505 13506 13507
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13508 13509
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13510
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
T
tianshuo78520a 已提交
13530
            The total batch size should be devisable by this value or smaller
13531 13532 13533
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13534
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13535 13536 13537 13538 13539
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13540
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13541 13542 13543 13544
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13545 13546
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13547 13548
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13549 13550
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13551
                  result. A Tensor with type float32, float64.
13552 13553 13554 13555 13556 13557
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13558 13559
          #deformable conv v2:
         
13560
          import paddle.fluid as fluid
13561 13562
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13563 13564 13565
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13566
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13567
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13568 13569 13570 13571

          #deformable conv v1:

          import paddle.fluid as fluid
13572 13573
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13574 13575
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13576
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13577
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13655 13656 13657

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13658 13659 13660 13661 13662


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13663
    This op returns a col buffer of sliding local blocks of input x, also known
13664
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
13665
    all element will be rearranged as a column. While the convolution filter sliding over
13666 13667
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13668
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13686 13687 13688
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
13701
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
13702
                                  [dilation_h, dilation_w], or an integer dilation treated as
13703
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13704 13705 13706
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13707 13708 13709

    
    Returns:
S
SunGaofeng 已提交
13710
        The tensor variable corresponding to the sliding local blocks. 
T
tianshuo78520a 已提交
13711
        The output shape is [N, Cout, Lout] as decriabled above. 
S
SunGaofeng 已提交
13712 13713 13714 13715 13716 13717
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13718 13719 13720 13721 13722 13723

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13724
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13795 13796 13797 13798 13799 13800 13801
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13802
    
13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
13829
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
13830 13831 13832 13833 13834 13835 13836
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
13837
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
13838 13839 13840 13841
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13842 13843 13844 13845

    Examples:
      .. code-block:: python

13846 13847
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13870 13871
  
        # position_sensitive=False
13872
        import paddle.fluid as fluid
C
chengjuntao 已提交
13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13932 13933 13934 13935


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13936
    This operator recomputes the `input` indices according to the offset of the
13937 13938 13939 13940 13941
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13942
        
13943 13944
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13945

13946 13947
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13948 13949

    Examples:
13950
    ::
13951
    
13952
        Input:
13953 13954
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13955 13956 13957
          index_num = 20
          nshards = 2
          ignore_value = -1
13958
        
13959
        if shard_id == 0, we get:
13960 13961 13962
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13963
        if shard_id == 1, we get:
13964 13965 13966 13967
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13968
        - **input** (Variable): Input indices, last dimension must be 1.
T
tianshuo78520a 已提交
13969
        - **index_num** (scalar): An integer defining the range of the index.
13970 13971
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
T
tianshuo78520a 已提交
13972
        - **ignore_value** (scalar): An integer value out of sharded index range
13973 13974

    Returns:
13975
        Variable: The sharded index of input.
13976 13977 13978 13979 13980

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13981 13982
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
14007 14008 14009 14010 14011


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
14012 14013 14014
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
14015

14016
    The formula is as follows:
H
huangjun12 已提交
14017

14018
    .. math::
H
huangjun12 已提交
14019

14020
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
14021

14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
14067 14068


G
Guo Sheng 已提交
14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


14144 14145 14146
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
14147 14148
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
14160 14161
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
14162 14163
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
14164
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
14165
                                                  Default: float32.
14166 14167
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
14168 14169 14170 14171 14172
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

14173 14174
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
14175

14176
    Raises:
T
tianshuo78520a 已提交
14177
        TypeError: The shape type should be list or tuple or variable.
14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
14191 14192
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
14193 14194

            # example 3:
14195
            # attr shape is a Variable, the data type must be int64 or int32.
14196
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
14197
            result_3 = fluid.layers.uniform_random(var_shape)
14198 14199 14200 14201
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

14202 14203

    """
14204
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
14205 14206
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
14207
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
14208

14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230
    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
T
tianshuo78520a 已提交
14231
                    "Each dimension size given in shape must not be negative "
14232 14233 14234 14235 14236
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
14237
    attrs = {'seed': seed, 'min': min, 'max': max}
14238
    if in_dygraph_mode():
H
hong 已提交
14239
        attrs['shape'] = shape
14240 14241 14242 14243 14244 14245 14246 14247
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
14248
            if utils._contain_var(shape):
14249 14250 14251 14252 14253 14254 14255 14256
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)