matmul_v2_op_npu.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/matmul_v2_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MatMulV2NPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* out = ctx.Output<framework::Tensor>("Out");
    bool transpose_x = ctx.Attr<bool>("trans_x");
    bool transpose_y = ctx.Attr<bool>("trans_y");

    if (x->dims().size() == 2) {
      out->mutable_data<T>(ctx.GetPlace());

L
Leo Chen 已提交
37
      const auto& runner = NpuOpRunner(
38 39 40 41 42 43 44 45 46 47 48
          "MatMul", {*x, *y}, {*out},
          {{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}});

      auto stream =
          ctx.template device_context<paddle::platform::NPUDeviceContext>()
              .stream();
      runner.Run(stream);

    } else if (x->dims().size() > 2) {
      out->mutable_data<T>(ctx.GetPlace());

L
Leo Chen 已提交
49
      const auto& runner =
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
          NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
                      {{"adj_x1", transpose_x}, {"adj_x2", transpose_y}});

      auto stream =
          ctx.template device_context<paddle::platform::NPUDeviceContext>()
              .stream();
      runner.Run(stream);
    }
  }
};

template <typename DeviceContext, typename T>
class MatMulV2GradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    bool transpose_y = ctx.Attr<bool>("trans_y");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (x->dims().size() == 2) {
      if (transpose_y) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
79
          const auto& runner_dx =
80 81 82 83 84 85 86
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", false}});

          runner_dx.Run(stream);
        }
        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
87
          const auto& runner_dy =
88 89 90 91 92 93 94 95 96
              NpuOpRunner("MatMul", {*dout, *x}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }

      } else {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
97
          const auto& runner_dx =
98 99 100 101 102 103 104
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});

          runner_dx.Run(stream);
        }
        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
105
          const auto& runner_dy =
106 107 108 109 110 111 112 113 114 115
              NpuOpRunner("MatMul", {*x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      }
    } else if (x->dims().size() > 2) {
      if (transpose_y) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
116 117 118
          const auto& runner_dx =
              NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
                          {{"adj_x1", false}, {"adj_x2", false}});
119 120 121 122 123

          runner_dx.Run(stream);
        }
        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
124 125 126
          const auto& runner_dy =
              NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy},
                          {{"adj_x1", true}, {"adj_x2", false}});
127 128 129 130 131 132

          runner_dy.Run(stream);
        }
      } else {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
L
Leo Chen 已提交
133 134 135
          const auto& runner_dx =
              NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
                          {{"adj_x1", false}, {"adj_x2", true}});
136 137 138 139 140

          runner_dx.Run(stream);
        }
        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
141 142 143
          if ((x->dims().size() == 3) && (dout->dims().size() == 3) &&
              (dy->dims().size() == 2)) {
            framework::Tensor dout_;
144
            dout_.ShareDataWith(*dout);
145 146 147 148 149
            std::vector<int> vec_dim = framework::vectorize<int>(dout_.dims());
            std::vector<int> vec_dim_v{vec_dim[0] * vec_dim[1], vec_dim[2]};
            dout_.Resize(framework::make_ddim(vec_dim_v));

            framework::Tensor x_;
150
            x_.ShareDataWith(*x);
151 152 153 154 155 156 157 158 159 160 161 162 163 164
            std::vector<int> vec_dim_x = framework::vectorize<int>(x_.dims());
            std::vector<int> vec_dim_x_v{vec_dim_x[0] * vec_dim_x[1],
                                         vec_dim_x[2]};
            x_.Resize(framework::make_ddim(vec_dim_x_v));
            const auto& runner_dy =
                NpuOpRunner("MatMul", {x_, dout_}, {*dy},
                            {{"transpose_x1", true}, {"transpose_x2", false}});
            runner_dy.Run(stream);
          } else {
            const auto& runner_dy =
                NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy},
                            {{"adj_x1", true}, {"adj_x2", false}});
            runner_dy.Run(stream);
          }
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
        }
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    matmul_v2,
    ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MatMulV2NPUKernel<paddle::platform::NPUDeviceContext,
                           paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
    matmul_v2_grad,
    ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MatMulV2GradNPUKernel<paddle::platform::NPUDeviceContext,
                               paddle::platform::float16>);