shuffle_channel_op.cc 4.7 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/shuffle_channel_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
S
shippingwang 已提交
15 16 17 18 19 20 21 22 23

namespace paddle {
namespace operators {

class ShuffleChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
S
shippingwang 已提交
24
    PADDLE_ENFORCE(ctx->HasInput("X"),
S
shippingwang 已提交
25
                   "Input(X) of ShuffleChannelOp should not be null.");
S
shippingwang 已提交
26
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
S
shippingwang 已提交
27 28 29 30 31 32 33
                   "Output(Out) of ShuffleChannelOp should not be null.");

    auto input_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

    ctx->SetOutputDim("Out", input_dims);
  }
S
shippingwang 已提交
34 35 36 37

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
38 39 40
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
S
shippingwang 已提交
41
  }
S
shippingwang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
};

class ShuffleChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), "
             "the input feature data of ShuffleChannelOp, the layout is NCHW.");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the output of "
              "ShuffleChannelOp. The layout is NCHW.");
    AddAttr<int>("group", "the number of groups.")
        .SetDefault(1)
        .AddCustomChecker([](const int& group) {
          PADDLE_ENFORCE_GE(group, 1, "group should be larger than 0.");
        });

    AddComment(R"DOC(
		Shuffle Channel operator
S
shippingwang 已提交
61 62 63
		This opearator shuffles the channels of input x.
		It  divide the input channels in each group into several subgroups,
		and obtain a new order by selecting element from every subgroup one by one.
S
shippingwang 已提交
64 65 66 67 68 69 70 71 72

		Shuffle channel operation makes it possible to build more powerful structures
		with multiple group convolutional layers.
		please get more information from the following paper:
		https://arxiv.org/pdf/1707.01083.pdf
        )DOC");
  }
};

S
shippingwang 已提交
73
class ShuffleChannelGradOp : public framework::OperatorWithKernel {
S
shippingwang 已提交
74 75 76 77
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
78
    auto input_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
shippingwang 已提交
79 80
    PADDLE_ENFORCE(input_dims.size() == 4, "The layout of input is NCHW.");

S
shippingwang 已提交
81 82
    ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
  }
S
shippingwang 已提交
83 84 85 86

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
87 88 89
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
S
shippingwang 已提交
90
  }
S
shippingwang 已提交
91 92
};

H
hong 已提交
93 94
template <typename T>
class ShuffleChannelGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
95
 public:
H
hong 已提交
96
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
97 98

 protected:
H
hong 已提交
99 100
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
101
    op->SetType("shuffle_channel_grad");
H
hong 已提交
102 103 104
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
105 106 107 108
    return op;
  }
};

S
shippingwang 已提交
109 110 111 112
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
S
shippingwang 已提交
113
REGISTER_OPERATOR(shuffle_channel, ops::ShuffleChannelOp,
H
hong 已提交
114 115 116
                  ops::ShuffleChannelOpMaker,
                  ops::ShuffleChannelGradMaker<paddle::framework::OpDesc>,
                  ops::ShuffleChannelGradMaker<paddle::imperative::OpBase>);
S
shippingwang 已提交
117

S
shippingwang 已提交
118
REGISTER_OPERATOR(shuffle_channel_grad, ops::ShuffleChannelGradOp);
S
shippingwang 已提交
119 120

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
121
    shuffle_channel,
S
shippingwang 已提交
122 123 124 125
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelOpKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
S
shippingwang 已提交
126
    shuffle_channel_grad,
S
shippingwang 已提交
127 128 129
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ShuffleChannelGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);