test_imperative_mnist.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
23
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
24
from test_imperative_base import new_program_scope
25
from utils import DyGraphProgramDescTracerTestHelper
J
Jiabin Yang 已提交
26
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
27 28


M
minqiyang 已提交
29
class SimpleImgConvPool(fluid.dygraph.Layer):
30

M
minqiyang 已提交
31
    def __init__(self,
32
                 num_channels,
M
minqiyang 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
48
        super(SimpleImgConvPool, self).__init__()
M
minqiyang 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
        self._conv2d = Conv2D(num_channels=num_channels,
                              num_filters=num_filters,
                              filter_size=filter_size,
                              stride=conv_stride,
                              padding=conv_padding,
                              dilation=conv_dilation,
                              groups=conv_groups,
                              param_attr=None,
                              bias_attr=None,
                              use_cudnn=use_cudnn)

        self._pool2d = Pool2D(pool_size=pool_size,
                              pool_type=pool_type,
                              pool_stride=pool_stride,
                              pool_padding=pool_padding,
                              global_pooling=global_pooling,
                              use_cudnn=use_cudnn)
67

M
minqiyang 已提交
68
    def forward(self, inputs):
M
minqiyang 已提交
69 70 71
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
72 73


M
minqiyang 已提交
74
class MNIST(fluid.dygraph.Layer):
75

76 77
    def __init__(self):
        super(MNIST, self).__init__()
78

79 80 81 82 83 84
        self._simple_img_conv_pool_1 = SimpleImgConvPool(1,
                                                         20,
                                                         5,
                                                         2,
                                                         2,
                                                         act="relu")
85

86 87 88 89 90 91
        self._simple_img_conv_pool_2 = SimpleImgConvPool(20,
                                                         50,
                                                         5,
                                                         2,
                                                         2,
                                                         act="relu")
M
minqiyang 已提交
92

93
        self.pool_2_shape = 50 * 4 * 4
M
minqiyang 已提交
94
        SIZE = 10
95
        scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5
96 97 98 99 100 101
        self._fc = Linear(self.pool_2_shape,
                          10,
                          param_attr=fluid.param_attr.ParamAttr(
                              initializer=fluid.initializer.NormalInitializer(
                                  loc=0.0, scale=scale)),
                          act="softmax")
M
minqiyang 已提交
102 103 104 105

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
106
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
M
minqiyang 已提交
107 108 109 110 111
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
112

113
    def reader_decorator(self, reader):
114

115 116 117 118 119 120 121 122
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

123
    def func_test_mnist_float32(self):
124
        seed = 90
M
minqiyang 已提交
125
        epoch_num = 1
126 127 128
        batch_size = 128
        batch_num = 50

129 130
        traced_layer = None

M
minqiyang 已提交
131
        with fluid.dygraph.guard():
132 133 134
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

135
            mnist = MNIST()
136 137
            sgd = SGDOptimizer(learning_rate=1e-3,
                               parameter_list=mnist.parameters())
138 139 140

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
141 142 143 144
                paddle.batch(self.reader_decorator(
                    paddle.dataset.mnist.train()),
                             batch_size=batch_size,
                             drop_last=True),
145
                places=fluid.CPUPlace())
146

M
minqiyang 已提交
147
            mnist.train()
148
            dy_param_init_value = {}
149

150 151
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
152
            for epoch in range(epoch_num):
153 154 155 156 157 158
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
159
                    label.stop_gradient = True
M
minqiyang 已提交
160

J
Jiabin Yang 已提交
161
                    if batch_id % 10 == 0 and _in_legacy_dygraph():
162
                        cost, traced_layer = paddle.jit.TracedLayer.trace(
163 164 165 166 167 168
                            mnist, inputs=img)
                        if program is not None:
                            self.assertTrue(program, traced_layer.program)
                        program = traced_layer.program
                        traced_layer.save_inference_model(
                            './infer_imperative_mnist')
169 170 171
                    else:
                        cost = mnist(img)

172 173 174 175
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

M
minqiyang 已提交
176
                    loss = fluid.layers.cross_entropy(cost, label)
177
                    avg_loss = paddle.mean(loss)
M
minqiyang 已提交
178

L
lujun 已提交
179
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
180 181 182

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
183
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
184

L
lujun 已提交
185
                    avg_loss.backward()
M
minqiyang 已提交
186 187 188 189 190
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
191
                        dy_param_value[param.name] = param.numpy()
192 193 194 195 196 197 198 199

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

200
            mnist = MNIST()
M
minqiyang 已提交
201
            sgd = SGDOptimizer(learning_rate=1e-3)
202 203 204
            train_reader = paddle.batch(paddle.dataset.mnist.train(),
                                        batch_size=batch_size,
                                        drop_last=True)
205

206 207 208
            img = fluid.layers.data(name='pixel',
                                    shape=[1, 28, 28],
                                    dtype='float32')
209 210
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
211
            loss = fluid.layers.cross_entropy(cost, label)
212
            avg_loss = paddle.mean(loss)
M
minqiyang 已提交
213
            sgd.minimize(avg_loss)
214 215 216 217

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
218
            for param in mnist.parameters():
219 220 221 222 223 224 225 226
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
227 228
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
229 230
                    if batch_id >= batch_num:
                        break
231 232 233 234 235 236
                    static_x_data = np.array([
                        x[0].reshape(1, 28, 28) for x in data
                    ]).astype('float32')
                    y_data = np.array([x[1]
                                       for x in data]).astype('int64').reshape(
                                           [batch_size, 1])
M
minqiyang 已提交
237 238 239

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
240 241 242 243

                    if traced_layer is not None:
                        traced_layer([static_x_data])

244 245 246 247 248 249
                    out = exe.run(fluid.default_main_program(),
                                  feed={
                                      "pixel": static_x_data,
                                      "label": y_data
                                  },
                                  fetch_list=fetch_list)
M
minqiyang 已提交
250 251 252 253

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
254 255
                        static_param_value[static_param_name_list[i -
                                                                  1]] = out[i]
M
minqiyang 已提交
256

257 258 259
        np.testing.assert_allclose(dy_x_data.all(),
                                   static_x_data.all(),
                                   rtol=1e-05)
260 261

        for key, value in six.iteritems(static_param_init_value):
262 263 264
            np.testing.assert_allclose(value,
                                       dy_param_init_value[key],
                                       rtol=1e-05)
M
minqiyang 已提交
265

266
        np.testing.assert_allclose(static_out, dy_out, rtol=1e-05)
M
minqiyang 已提交
267

268
        for key, value in six.iteritems(static_param_value):
269 270 271 272
            np.testing.assert_allclose(value,
                                       dy_param_value[key],
                                       rtol=1e-05,
                                       atol=1e-05)
273

274 275 276 277 278
    def test_mnist_float32(self):
        with _test_eager_guard():
            self.func_test_mnist_float32()
        self.func_test_mnist_float32()

279 280

if __name__ == '__main__':
H
hong 已提交
281
    paddle.enable_static()
282
    unittest.main()