test_hsigmoid_op.py 26.4 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yancey1989 已提交
15 16
import unittest
import numpy as np
L
Leo Chen 已提交
17
import paddle
J
JiabinYang 已提交
18
import paddle.fluid as fluid
19
import paddle.nn.functional as F
20
from paddle.fluid import Program, program_guard
21
import paddle.fluid.initializer as I
Y
Yancey1989 已提交
22
import math
23
from op_test import OpTest, skip_check_grad_ci
Y
Yancey1989 已提交
24

25
paddle.enable_static()
D
dzhwinter 已提交
26 27
np.random.seed(100)

Y
Yancey1989 已提交
28 29 30 31 32 33

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
34

Y
Yancey1989 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


48
class CodeTableWithCustomTree(object):
49

50 51 52
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
53 54 55 56 57 58 59
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
60
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
61 62 63 64 65 66 67 68 69 70
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
71
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
72 73 74
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
75 76 77
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
78
    for i in range(batch_size):
W
weixing02 已提交
79
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
80
        length = code_table.get_length()
W
weixing02 已提交
81
        for j in range(length):
Y
Yancey1989 已提交
82
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
83
            pre_output[i][j] += bias[idx][0]
84 85
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
86
        length = code_table.get_length()
87 88 89
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
90
    # clip[-40.0, 40.0]
W
weixing02 已提交
91
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
92
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
93
    for i in range(batch_size):
W
weixing02 已提交
94
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
95 96
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
97
        for j in range(length):
Y
Yancey1989 已提交
98 99 100 101 102 103 104
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
105
    return pre_output, out
Y
Yancey1989 已提交
106 107


108 109
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
110 111 112
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


132 133
def hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias,
                           num_classes):
134
    batch_size = x.shape[0]
135
    code_length = len(path_table[0])
136
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
137
    # init pre_out with shape [N, code_length]
138 139 140
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
141 142
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
143
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
144 145 146 147
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
148
    for i in range(batch_size):
149
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
150 151 152 153 154 155 156 157
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
158
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
159 160 161 162 163 164 165 166 167 168 169 170 171
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
def python_api(input,
               weight,
               label,
               path_table=None,
               path_code=None,
               bias=None,
               num_classes=-1,
               is_sparse=False,
               remote_prefetch=False):
    assert is_sparse == remote_prefetch, "is_sparse is equal to remote_prefetch in dygraph."
    return paddle.nn.functional.hsigmoid_loss(input, label, num_classes, weight,
                                              bias, path_table, path_code,
                                              is_sparse)


python_out_sig = ["Out"]


J
JiabinYang 已提交
190
class TestHSigmoidOp(OpTest):
191

J
JiabinYang 已提交
192 193
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
194 195
        self.python_api = python_api
        self.python_out_sig = python_out_sig
196 197 198
        num_classes = 101
        feature_size = 5
        batch_size = 20
199 200 201 202 203 204 205
        x = np.random.uniform(-1, 1,
                              (batch_size, feature_size)).astype('float64')
        w = np.random.uniform(-1, 1,
                              (num_classes - 1, feature_size)).astype('float64')
        label = np.random.randint(0, num_classes,
                                  (batch_size, 1)).astype('int64')
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
206 207 208 209
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
210
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
211 212

    def test_check_output(self):
213
        self.check_output(check_eager=True)
J
JiabinYang 已提交
214 215

    def test_check_grad(self):
216
        self.check_grad(['X', 'W', 'Bias'], ['Out'],
217 218
                        user_defined_grads=self.user_grads,
                        check_eager=True)
J
JiabinYang 已提交
219 220


221
@skip_check_grad_ci(
222 223
    reason=
    "For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
224
)
J
JiabinYang 已提交
225
class TestHSigmoidOpSparse(OpTest):
226

J
JiabinYang 已提交
227 228
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
229 230
        self.python_api = python_api
        self.python_out_sig = python_out_sig
J
JiabinYang 已提交
231 232 233
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
234 235
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
236 237
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
238 239
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
240 241
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
242 243 244
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
245
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
246 247 248 249
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
250
            'PathTable': path_table,
251
            'PathCode': path_code,
J
JiabinYang 已提交
252 253 254
            'Label': label,
            'Bias': bias
        }
255 256
        pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
                                                 label, bias, num_classes)
J
JiabinYang 已提交
257 258 259
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
260
        self.check_output(check_eager=True)
J
JiabinYang 已提交
261 262 263


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
264

J
JiabinYang 已提交
265 266
    def hs_net_conf(self, is_sparse):
        input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
267 268 269 270 271 272
        path_table = fluid.layers.data(name='path_table',
                                       shape=[3],
                                       dtype='int64')
        path_code = fluid.layers.data(name='path_code',
                                      shape=[3],
                                      dtype='int64')
J
JiabinYang 已提交
273
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
J
JiabinYang 已提交
274

275
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
276 277 278

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
279
            is_sparse=is_sparse,
J
JiabinYang 已提交
280 281 282 283
            size=[3, 3],
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(3))))

284 285 286 287 288 289 290 291
        cost = fluid.layers.hsigmoid(input=emb,
                                     label=label,
                                     bias_attr=True,
                                     num_classes=3,
                                     path_table=path_table,
                                     path_code=path_code,
                                     is_custom=True,
                                     is_sparse=is_sparse)
J
JiabinYang 已提交
292 293 294 295 296

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

J
JiabinYang 已提交
297 298
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
299
            paddle.seed(1)
J
JiabinYang 已提交
300 301
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
302 303 304
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
305 306 307 308 309 310 311 312 313 314 315 316

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
317
            for i in range(10):
318 319
                data = [([[x[i % 2]]], [list(path_table[i % 2])],
                         [list(path_code[i % 2])], [label[i % 2]])]
J
JiabinYang 已提交
320

J
JiabinYang 已提交
321 322 323
                loss_val = exe.run(main_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[loss])
J
JiabinYang 已提交
324 325 326 327 328 329 330 331 332
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
        assert (dense_result == sparse_result)


333
@skip_check_grad_ci(
334 335
    reason=
    "[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
336
)
J
JiabinYang 已提交
337
class TestHSigmoidOpWithCostumTree(OpTest):
338

J
JiabinYang 已提交
339 340
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
341 342
        self.python_api = python_api
        self.python_out_sig = python_out_sig
J
JiabinYang 已提交
343 344 345
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
346 347
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
348 349
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
350 351
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
352 353
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
354 355 356
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
357
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
358 359 360 361
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
362
            'PathTable': path_table,
363
            'PathCode': path_code,
J
JiabinYang 已提交
364 365 366
            'Label': label,
            'Bias': bias
        }
367 368
        pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
                                                 label, bias, num_classes)
J
JiabinYang 已提交
369 370 371
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
372
        self.check_output(check_eager=True)
J
JiabinYang 已提交
373 374

    def test_check_grad(self):
375 376 377
        self.check_grad(['Bias', 'X', 'W'], ['Out'],
                        no_grad_set=set('Label'),
                        check_eager=True)
J
JiabinYang 已提交
378

Y
Yancey1989 已提交
379

380
@skip_check_grad_ci(
381 382
    reason=
    "[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
383
)
384
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
385

386 387
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
388 389
        self.python_api = python_api
        self.python_out_sig = python_out_sig
390 391 392
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
393 394
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
395 396
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
397 398
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
399 400
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
401 402 403
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
404 405 406 407 408
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
409
            'PathTable': path_table,
410
            'PathCode': path_code,
411 412
            'Label': label,
        }
413 414 415 416 417 418 419
        pre_output, out = hsigmoidWithCustomTree(x=x,
                                                 w=w,
                                                 path_table=path_table,
                                                 path_code=path_code,
                                                 label=label,
                                                 bias=None,
                                                 num_classes=num_classes)
420 421 422
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
423
        self.check_output(check_eager=True)
424 425

    def test_check_grad(self):
426 427 428
        self.check_grad(['X', 'W'], ['Out'],
                        no_grad_set=set('Label'),
                        check_eager=True)
429 430


431 432 433 434 435 436 437 438 439 440 441 442 443 444
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
            -1, 1, [self.batch_size, self.feature_size]).astype(self.dtype)
445 446 447
        self.labels_np = np.random.randint(self.num_classes,
                                           size=(self.batch_size, 1),
                                           dtype='int64')
448 449
        self.weight_np = np.random.uniform(
            -1, 1, [self.num_classes - 1, self.feature_size]).astype(self.dtype)
450 451
        self.bias_np = np.random.uniform(
            -1, 1, (self.num_classes - 1, )).astype(self.dtype)
452 453 454 455 456 457 458
        self.path_table_np = None
        self.path_code_np = None
        _, self.out_np = hsigmoid(self.x_np, self.weight_np, self.labels_np,
                                  self.bias_np, self.num_classes)
        self.set_attrs()

        if self.is_custom:
459 460 461 462 463 464
            _, self.out_np = hsigmoidWithCustomTree(self.x_np, self.weight_np,
                                                    self.path_table_np,
                                                    self.path_code_np,
                                                    self.labels_np,
                                                    self.bias_np.reshape(-1, 1),
                                                    self.num_classes)
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
        out1 = F.hsigmoid_loss(x, labels, self.num_classes, weight, bias,
                               path_table, path_code)

        weight_attr = I.NumpyArrayInitializer(self.weight_np)
        bias_attr = I.NumpyArrayInitializer(self.bias_np)
        m = paddle.nn.HSigmoidLoss(self.feature_size, self.num_classes,
                                   weight_attr, bias_attr, self.is_custom)
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
490
            np.testing.assert_allclose(self.out_np, out.numpy(), rtol=1e-05)
491 492 493 494 495 496 497 498 499
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
500 501 502
            bias = paddle.static.data('bias', [
                -1,
            ])
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
            out1 = F.hsigmoid_loss(x, labels, self.num_classes, weight, bias,
                                   path_table, path_code)

            weight_attr = paddle.framework.ParamAttr(
                initializer=I.NumpyArrayInitializer(self.weight_np))
            bias_attr = paddle.framework.ParamAttr(
                initializer=I.NumpyArrayInitializer(self.bias_np))
            m = paddle.nn.HSigmoidLoss(self.feature_size, self.num_classes,
                                       weight_attr, bias_attr, self.is_custom)
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
                'bias': self.bias_np
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
            ret1, ret2 = exe.run(train_program,
                                 feed=feed_dict,
                                 fetch_list=[out1, out2])

            for ret in [ret1, ret2]:
535
                np.testing.assert_allclose(self.out_np, ret, rtol=1e-05)
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
            weight_attr = I.NumpyArrayInitializer(self.weight_np)
            bias_attr = I.NumpyArrayInitializer(self.bias_np)
            out = fluid.layers.hsigmoid(x, labels, self.num_classes,
                                        weight_attr, bias_attr, 'out',
                                        path_table, path_code, self.is_custom)

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
            ret, = exe.run(train_program, feed=feed_dict, fetch_list=[out])

562
            np.testing.assert_allclose(ret, self.out_np, rtol=1e-05)
563

564
    def test_errors(self):
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x_int32, label, 8,
                              weight)

            label_float32 = paddle.static.data('label_float32', [4, 1],
                                               'float32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x, label_float32, 8,
                              weight)

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x, label, 8,
                              weight_int32)

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
590 591 592 593 594 595 596
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              bias=bias_int32)
597 598 599

            path_table_int32 = paddle.static.data('path_table_int32', [7],
                                                  'int32')
600 601 602 603 604 605 606
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              path_table=path_table_int32)
607 608 609

            path_code_int32 = paddle.static.data('path_code_int32', [7],
                                                 'int32')
610 611 612 613 614 615 616
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              path_code=path_code_int32)
617

L
Linjie Chen 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

632
        # test paddle.fluid.layers.hsigmoid
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
        with program_guard(Program()):
            label = fluid.data('label', [4, 1], 'int64')
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, 1, label, 2)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[4, 3], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_int32, label,
                              2)
            # support the input dtype is float32
            x_fp32 = fluid.data(name='x_fp32', shape=[4, 3], dtype='float32')
            fluid.layers.hsigmoid(x_fp32, label, 2)

            # The label type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32, 1, 2)
            # The label dtype must be int64.
            label_int32 = fluid.data('label_int32', [4, 1], 'int32')
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32,
                              label_int32, 2)


653
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
654

655 656
    def set_attrs(self):
        self.is_custom = True
657 658 659 660 661 662
        self.path_table_np = np.array([(0, 2, -1, -1, -1), (0, 1, 3, -1, -1),
                                       (0, 1, 4, -1, -1),
                                       (0, 2, -1, -1, -1)]).astype(np.int64)
        self.path_code_np = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                                      (1, 0, 0, -1, -1),
                                      (0, 1, -1, -1, -1)]).astype(np.int64)
663 664 665 666 667

    def test_errors(self):
        pass


Y
Yancey1989 已提交
668 669
if __name__ == '__main__':
    unittest.main()