lstmp_op.h 20.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <string>
17
#include <vector>
Y
Yu Yang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/activation_op.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
25
#include "paddle/fluid/platform/transform.h"
26 27 28 29 30 31

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
32
using platform::Transform;
33

34 35 36 37
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
template <typename T>
class _ClipFunctor {
 public:
  explicit _ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x) const {
    if (x < min_)
      return min_;
    else if (x > max_)
      return max_;
    else
      return x;
  }

 private:
  T min_;
  T max_;
};

template <typename T>
class _ClipGradFunctor {
 public:
  explicit _ClipGradFunctor(const T min, const T max) : min_(min), max_(max) {}
  HOSTDEVICE T operator()(const T& x, const T& y) const {
    return (y > min_ && y < max_) ? x : 0;
  }

 private:
  T min_;
  T max_;
};

69 70
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
71 72
                             const framework::Tensor& src,
                             framework::Vector<size_t> index,
73 74 75
                             framework::Tensor* dst, bool indexed_src) {
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
76
  row_shuffle(ctx, src, index, dst, indexed_src);
77 78 79 80 81
}

template <typename DeviceContext, typename T>
class LSTMPKernel : public framework::OpKernel<T> {
 public:
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  template <typename Device, typename X, typename Y>
  void ActCompute(const math::detail::ActivationType act_type, const Device& d,
                  X x, Y y) const {
    if (act_type == math::detail::ActivationType::kIdentity)
      y.device(d) = x;
    else if (act_type == math::detail::ActivationType::kSigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == math::detail::ActivationType::kTanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == math::detail::ActivationType::kReLU)
      ReluFunctor<T>()(d, x, y);
    else
      PADDLE_THROW("unsupported activation type");
  }

97 98 99 100 101 102 103 104 105
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* weight = ctx.Input<Tensor>("Weight");
    auto* proj_weight = ctx.Input<Tensor>("ProjWeight");
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* hidden_t0 = ctx.Input<Tensor>("H0");
    auto* cell_t0 = ctx.Input<Tensor>("C0");

106 107 108
    auto proj_clip = static_cast<T>(ctx.Attr<float>("proj_clip"));
    auto cell_clip = static_cast<T>(ctx.Attr<float>("cell_clip"));

109 110 111 112 113 114 115 116 117 118
    auto* batch_gate = ctx.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(ctx.GetPlace());
    auto* proj_out = ctx.Output<LoDTensor>("Projection");
    proj_out->mutable_data<T>(ctx.GetPlace());
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    cell_out->mutable_data<T>(ctx.GetPlace());

    bool is_reverse = ctx.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& device_ctx = ctx.template device_context<DeviceContext>();
119
    to_batch(device_ctx, *input, batch_gate, true, is_reverse);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    auto in_dims = input->dims();
    int frame_size = static_cast<int>(in_dims[1] / 4);
    framework::DDim dims({in_dims[0], frame_size});
    framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]});

    if (bias) {
      Tensor b = *bias;
      b.Resize({bias->numel(), 1});
      Tensor gate_bias = b.Slice(0, 4 * frame_size);
      math::RowwiseAdd<DeviceContext, T> add_bias;
      add_bias(device_ctx, *batch_gate, gate_bias, batch_gate);
    }

    math::LstmMetaValue<T> lstmp_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      // the code style in LstmpMetaValue will be updated later.

      lstmp_value.check_ig = bias_data + 4 * frame_size;
      lstmp_value.check_fg = lstmp_value.check_ig + frame_size;
      lstmp_value.check_og = lstmp_value.check_fg + frame_size;
    } else {
      lstmp_value.check_ig = nullptr;
      lstmp_value.check_fg = nullptr;
      lstmp_value.check_og = nullptr;
    }
    lstmp_value.prev_state_value = nullptr;
    Tensor ordered_c0;
149
    Tensor ordered_h0;
D
dzhwinter 已提交
150 151 152

    framework::Vector<size_t> order(batch_gate->lod()[2]);

153 154 155 156 157 158 159 160 161 162
    if (cell_t0) {
      // Since the batch computing for LSTMP reorders the input sequence
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<DeviceContext, T>(device_ctx, *cell_t0, order,
                                         &ordered_c0, true);
      lstmp_value.prev_state_value = ordered_c0.data<T>();
    }

    // Use the local variable as here.
163
    LoDTensor batch_proj, batch_cell;
164
    auto* batch_cell_pre_act = ctx.Output<LoDTensor>("BatchCellPreAct");
165 166 167
    batch_cell_pre_act->mutable_data<T>(dims, ctx.GetPlace());
    auto* batch_hidden = ctx.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(dims, ctx.GetPlace());    // T x D
168 169 170 171 172 173 174 175 176 177 178
    batch_proj.mutable_data<T>(proj_dims, ctx.GetPlace());  // T x P
    batch_cell.mutable_data<T>(dims, ctx.GetPlace());       // T x D

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
179 180
    auto proj_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("proj_activation"));
181
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
Y
Yu Yang 已提交
182
    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
183 184 185 186 187
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

      Tensor gate_t = batch_gate->Slice(bstart, bend);
188
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
189 190 191 192 193 194 195 196 197 198
      Tensor proj_t = batch_proj.Slice(bstart, bend);
      Tensor cell_t = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_proj_t = batch_proj.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
199 200
        blas.MatMul(pre_proj_t, false, *weight, false, static_cast<T>(1.0),
                    &gate_t, static_cast<T>(1.0));
201 202 203 204 205 206 207 208 209 210
      } else if (hidden_t0) {
        // If n == 0 and there is no initialized hidden state, that is to say
        // the H0 is zeros, the calculation W_h * H0 will be skiped.
        // If n == 0 and there is initialized hidden state, calculate W_h * H0.

        // Since the batch computing for LSTMP reorders the input sequence
        // according to their length. The initialized hidden state also needs
        // to reorder.
        ReorderInitState<DeviceContext, T>(device_ctx, *hidden_t0, order,
                                           &ordered_h0, true);
211
        blas.MatMul(ordered_h0, false, *weight, false, static_cast<T>(1.0),
Y
Yu Yang 已提交
212
                    &gate_t, static_cast<T>(1.0));
213 214 215 216 217 218 219
      }

      lstmp_value.gate_value = gate_t.data<T>();
      lstmp_value.output_value = hidden_t.data<T>();
      lstmp_value.state_value = cell_t.data<T>();
      lstmp_value.state_active_value = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<DeviceContext, T>::compute(
220 221
          device_ctx, lstmp_value, frame_size, cur_batch_size, cell_clip,
          gate_act, cell_act, cand_act);
222
      lstmp_value.prev_state_value = lstmp_value.state_value;
Y
Yu Yang 已提交
223 224
      blas.MatMul(hidden_t, false, *proj_weight, false, static_cast<T>(1.0),
                  &proj_t, static_cast<T>(0.0));
225
      if (proj_act != math::detail::ActivationType::kIdentity) {
226 227 228
        auto proj_t_dev = EigenMatrix<T>::From(proj_t);
        ActCompute(cell_act, place, proj_t_dev, proj_t_dev);
      }
229 230 231 232 233 234 235 236
      if (proj_clip && proj_clip > 0.0) {
        T* x_data = proj_t.data<T>();
        int64_t numel = proj_t.numel();
        Transform<DeviceContext> trans;
        trans(ctx.template device_context<DeviceContext>(), x_data,
              x_data + numel, x_data,
              _ClipFunctor<T>(-1.0 * proj_clip, proj_clip));
      }
237 238 239 240 241
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    batch_proj.set_lod(batch_gate->lod());
    // restore the output hidden in LoDTensor from the batch hidden
242
    to_seq(device_ctx, batch_proj, proj_out);
243 244 245

    batch_cell.set_lod(batch_gate->lod());
    // restore the output cell state in LoDTensor from the batch cell
246
    to_seq(device_ctx, batch_cell, cell_out);
247 248 249 250 251 252
  }
};

template <typename DeviceContext, typename T>
class LSTMPGradKernel : public framework::OpKernel<T> {
 public:
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const math::detail::ActivationType act_type,
                      const Device& d, X x, Y y, DX dx, DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == math::detail::ActivationType::kIdentity)
      dx.device(d) = dy;
    else if (act_type == math::detail::ActivationType::kSigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == math::detail::ActivationType::kTanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == math::detail::ActivationType::kReLU)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
      PADDLE_THROW("unsupported activation type");
  }

269 270
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* weight = ctx.Input<Tensor>("Weight");
271
    auto* proj_weight = ctx.Input<Tensor>("ProjWeight");
272 273 274 275 276
    auto* bias = ctx.Input<Tensor>("Bias");

    auto* proj_out = ctx.Input<LoDTensor>("Projection");
    auto* cell_out = ctx.Input<LoDTensor>("Cell");

277 278 279
    auto proj_clip = static_cast<T>(ctx.Attr<float>("proj_clip"));
    auto cell_clip = static_cast<T>(ctx.Attr<float>("cell_clip"));

280 281
    auto* batch_gate = ctx.Input<LoDTensor>("BatchGate");
    auto* batch_cell_pre_act = ctx.Input<LoDTensor>("BatchCellPreAct");
282
    auto* batch_hidden = ctx.Input<LoDTensor>("BatchHidden");
283

284 285
    auto* projection_g =
        ctx.Input<LoDTensor>(framework::GradVarName("Projection"));
286 287 288

    auto* in_g = ctx.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* weight_g = ctx.Output<Tensor>(framework::GradVarName("Weight"));
289 290
    auto* proj_weight_g =
        ctx.Output<Tensor>(framework::GradVarName("ProjWeight"));
291 292 293 294 295 296 297 298 299 300 301 302 303 304
    auto* bias_g = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");

    auto* h0_g = ctx.Output<Tensor>(framework::GradVarName("H0"));
    auto* c0_g = ctx.Output<Tensor>(framework::GradVarName("C0"));

    auto& device_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
    if (weight_g) {
      weight_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, weight_g, static_cast<T>(0.0));
    }
305 306 307 308
    if (proj_weight_g) {
      proj_weight_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, proj_weight_g, static_cast<T>(0.0));
    }
309 310 311 312 313

    // ordered_h0/c0 is the reordered hidden/cell initialization.
    // ordered_h0_g/c0_g is the reordered gradient of hidden/cell
    // initialization.
    Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g;
D
dzhwinter 已提交
314 315 316

    framework::Vector<size_t> order(batch_gate->lod()[2]);

317 318 319 320 321 322 323 324
    if (c0) {
      ReorderInitState<DeviceContext, T>(device_ctx, *c0, order, &ordered_c0,
                                         true);
    }
    if (c0 && c0_g) {
      ordered_c0_g.mutable_data<T>(c0_g->dims(), ctx.GetPlace());
    }

325 326
    // batch_gate dims equal to input dims
    auto in_dims = batch_gate->dims();
327 328
    auto out_dims = cell_out->dims();
    framework::DDim proj_dims({in_dims[0], proj_weight->dims()[1]});
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    int frame_size = static_cast<int>(in_dims[1] / 4);
    PADDLE_ENFORCE_EQ(frame_size, out_dims[1]);

    math::LstmMetaValue<T> lstmp_value;
    if (bias && ctx.Attr<bool>("use_peepholes")) {
      T* bias_data = const_cast<T*>(bias->data<T>());
      lstmp_value.check_ig = bias_data + 4 * frame_size;
      lstmp_value.check_fg = lstmp_value.check_ig + frame_size;
      lstmp_value.check_og = lstmp_value.check_fg + frame_size;
    } else {
      lstmp_value.check_ig = nullptr;
      lstmp_value.check_fg = nullptr;
      lstmp_value.check_og = nullptr;
    }

    math::LstmMetaGrad<T> lstmp_grad;

    if (bias && bias_g) {
      bias_g->mutable_data<T>(ctx.GetPlace());
      zero(device_ctx, bias_g, static_cast<T>(0.0));
    }
    if (bias && bias_g && ctx.Attr<bool>("use_peepholes")) {
      T* bias_g_data = bias_g->data<T>();
      lstmp_grad.check_ig_grad = bias_g_data + 4 * frame_size;
      lstmp_grad.check_fg_grad = lstmp_grad.check_ig_grad + frame_size;
      lstmp_grad.check_og_grad = lstmp_grad.check_fg_grad + frame_size;
    } else {
      lstmp_grad.check_ig_grad = nullptr;
      lstmp_grad.check_fg_grad = nullptr;
      lstmp_grad.check_og_grad = nullptr;
    }

    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;

    auto ToBatch = [&batch_gate, &to_batch](
        const DeviceContext& ctx, const framework::LoDTensor& src,
        const framework::DDim& dims, framework::LoDTensor& dst) {
      dst.mutable_data<T>(dims, ctx.GetPlace());
      dst.set_lod(batch_gate->lod());
368
      to_batch(ctx, src, &dst, false);
369 370
    };

371 372 373 374 375
    LoDTensor batch_hidden_g, batch_proj, batch_proj_g, batch_cell;
    batch_hidden_g.mutable_data<T>(out_dims, ctx.GetPlace());
    ToBatch(device_ctx, *proj_out, proj_dims, batch_proj);        // T x P
    ToBatch(device_ctx, *projection_g, proj_dims, batch_proj_g);  // T x P
    ToBatch(device_ctx, *cell_out, out_dims, batch_cell);         // T x D
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

    LoDTensor batch_cell_g, batch_gate_g;
    batch_cell_g.mutable_data<T>(out_dims, ctx.GetPlace());
    // TODO(qingqing) support the case output cell has gradient.
    // to_batch(device_ctx, *cell_g, batch_cell_g, false);
    zero(device_ctx, &batch_cell_g, static_cast<T>(0.0));
    batch_gate_g.mutable_data<T>(batch_gate->dims(), ctx.GetPlace());
    batch_gate_g.set_lod(batch_gate->lod());

    auto gate_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("gate_activation"));
    auto cell_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("cell_activation"));
    auto cand_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("candidate_activation"));
391 392
    auto proj_act = math::detail::GetActivationType(
        ctx.Attr<std::string>("proj_activation"));
393
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
394 395 396

    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
Y
Yu Yang 已提交
397
    auto blas = math::GetBlas<DeviceContext, T>(device_ctx);
398 399 400 401
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);

402 403
      Tensor cur_proj = batch_proj.Slice(bstart, bend);
      Tensor proj_g = batch_proj_g.Slice(bstart, bend);
404 405 406 407 408 409 410 411 412 413 414

      if (proj_clip && proj_clip > 0.0) {
        T* dx_data = proj_g.data<T>();
        T* x_data = cur_proj.data<T>();
        int64_t numel = proj_g.numel();
        Transform<DeviceContext> trans;
        trans(ctx.template device_context<DeviceContext>(), dx_data,
              dx_data + numel, x_data, dx_data,
              _ClipGradFunctor<T>(-1.0 * proj_clip, proj_clip));
      }

415
      if (proj_act != math::detail::ActivationType::kIdentity) {
416 417 418 419 420
        auto cur_proj_dev = EigenMatrix<T>::From(cur_proj);
        auto proj_g_dev = EigenMatrix<T>::From(proj_g);
        ActGradCompute(cell_act, place, cur_proj_dev, cur_proj_dev, proj_g_dev,
                       proj_g_dev);
      }
421
      /* hidden state backwarad */
422
      Tensor out_g = batch_hidden_g.Slice(bstart, bend);
Y
Yu Yang 已提交
423 424
      blas.MatMul(proj_g, false, *proj_weight, true, static_cast<T>(1.0),
                  &out_g, static_cast<T>(0.0));
425 426 427
      /* projection weight backward*/
      if (proj_weight_g) {
        Tensor hidden_t = batch_hidden->Slice(bstart, bend);
Y
Yu Yang 已提交
428 429
        blas.MatMul(hidden_t, true, proj_g, false, static_cast<T>(1.0),
                    proj_weight_g, static_cast<T>(1.0));
430
      }
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
      Tensor gate = batch_gate->Slice(bstart, bend);
      Tensor cell = batch_cell.Slice(bstart, bend);
      Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend);
      lstmp_value.gate_value = gate.data<T>();
      lstmp_value.state_value = cell.data<T>();
      lstmp_value.state_active_value = cell_pre_act.data<T>();

      Tensor gate_g = batch_gate_g.Slice(bstart, bend);
      Tensor cell_g = batch_cell_g.Slice(bstart, bend);
      lstmp_grad.state_grad = cell_g.data<T>();
      lstmp_grad.gate_grad = gate_g.data<T>();
      lstmp_grad.output_grad = out_g.data<T>();

      if (n > 0) {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart);
        Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart);
        lstmp_value.prev_state_value = cell_pre.data<T>();
        lstmp_grad.prev_state_grad = cell_pre_g.data<T>();
      } else {
        lstmp_value.prev_state_value = c0 ? ordered_c0.data<T>() : nullptr;
        lstmp_grad.prev_state_grad = c0_g ? ordered_c0_g.data<T>() : nullptr;
      }

      int cur_batch_size = bend - bstart;
L
liuhongyu 已提交
457 458 459 460
      // lstmp_value.output_value not used in bp, set to null
      // lstmp_grad.state_active_grad not used in bp, set to null
      lstmp_value.output_value = nullptr;
      lstmp_grad.state_active_grad = nullptr;
L
liuhongyu 已提交
461

462 463
      math::LstmUnitGradFunctor<DeviceContext, T>::compute(
          device_ctx, lstmp_value, lstmp_grad, frame_size, cur_batch_size,
464
          cell_clip, gate_act, cell_act, cand_act);
465 466 467 468 469

      if (n > 0) {
        int pre_h_start = static_cast<int>(batch_starts[n - 1]);
        int pre_h_end = pre_h_start + cur_batch_size;
        auto pre_proj_g = batch_proj_g.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
470 471
        blas.MatMul(gate_g, false, *weight, true, static_cast<T>(1.0),
                    &pre_proj_g, static_cast<T>(1.0));
472
        if (weight_g) {
473
          /* weight backward*/
474
          auto pre_proj = batch_proj.Slice(pre_h_start, pre_h_end);
Y
Yu Yang 已提交
475 476
          blas.MatMul(pre_proj, true, gate_g, false, static_cast<T>(1.0),
                      weight_g, static_cast<T>(1.0));
477 478 479 480 481
        }
      } else {
        if (h0 && weight_g) {
          ReorderInitState<DeviceContext, T>(device_ctx, *h0, order,
                                             &ordered_h0, true);
482
          if (weight_g) {
483 484
            blas.MatMul(ordered_h0, true, gate_g, false, static_cast<T>(1.0),
                        weight_g, static_cast<T>(1.0));
485
          }
486
        }
487
        if (h0 && (h0_g || proj_weight_g)) {
488
          ordered_h0_g.mutable_data<T>(h0_g->dims(), ctx.GetPlace());
Y
Yu Yang 已提交
489
          blas.MatMul(gate_g, false, *weight, true, static_cast<T>(1.0),
490
                      &ordered_h0_g, static_cast<T>(0.0));
491 492 493 494 495 496 497 498
        }
      }
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
    if (in_g) {
      /* backward data */
      in_g->mutable_data<T>(ctx.GetPlace());
499
      to_seq(device_ctx, batch_gate_g, in_g);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    }
    if (bias && bias_g) {
      /* backward bias */
      Tensor b_g = *bias_g;
      b_g.Resize({bias_g->numel(), 1});
      Tensor gate_bias_g = b_g.Slice(0, 4 * frame_size);
      math::ColwiseSum<DeviceContext, T> col_sum;
      col_sum(device_ctx, batch_gate_g, &gate_bias_g);
    }

    if (h0 && h0_g) {
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_h0_g, order, h0_g,
                                         false);
    }
    if (c0 && c0_g) {
      ReorderInitState<DeviceContext, T>(device_ctx, ordered_c0_g, order, c0_g,
                                         false);
    }
  }
};

}  // namespace operators
}  // namespace paddle