sequence_lod.py 56.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .layer_function_generator import templatedoc
from ..framework import Variable, in_dygraph_mode
from ..layer_helper import LayerHelper
20
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

__all__ = [
    'sequence_conv',
    'sequence_softmax',
    'sequence_pool',
    'sequence_concat',
    'sequence_first_step',
    'sequence_last_step',
    'sequence_slice',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'sequence_unpad',
    'sequence_reshape',
    'sequence_scatter',
    'sequence_enumerate',
    'sequence_mask',
    'sequence_reverse',
]


@templatedoc()
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=True,
                  padding_start=None,
                  bias_attr=None,
                  param_attr=None,
                  act=None,
                  name=None):
    """
    **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use conv2d Op.(fluid.layers.** :ref:`api_fluid_layers_conv2d` ).

    This operator receives input sequences with variable length and other convolutional
    configuration parameters(num_filters, filter_size) to apply the convolution operation.
    It fills all-zero padding data on both sides of the sequence by default to ensure that
    the output is the same length as the input. You can customize the padding behavior by
    configuring the parameter :attr:`padding\_start` .
    
    **Warning:** the parameter :attr:`padding` take no effect and will be deprecated in the future.

    .. code-block:: text

            Here we will illustrate the details of the padding operation:
            For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
            Assumed input (X) is a [4, N] float LoDTensor, and for the sake of simplicity, we assume N=2.
            input.data = [[1, 1],
                          [2, 2],
                          [3, 3],
                          [4, 4]]

            This is to say that input (X) has 4 words and the dimension of each word
            representation is 2.

            * Case1:

                If padding_start is -1 and filter_size is 3.
                The length of padding data is calculated as follows:
                up_pad_len = max(0, -padding_start) = 1
                down_pad_len = max(0, filter_size + padding_start - 1) = 1

                The output of the input sequence after padding is:
                data_aftet_padding = [[0, 0, 1, 1, 2, 2],
                                      [1, 1, 2, 2, 3, 3],
                                      [2, 2, 3, 3, 0, 0],
                                      [0, 0, 4, 4, 0, 0]]

                It will be multiplied by the filter weight to get the final output.
                Assume num_filters = 3
                output.data = [[ 0.3234, -0.2334,  0.7433],
                               [ 0.5646,  0.9464, -0.1223],
                               [-0.1343,  0.5653,  0.4555],
                               [ 0.9954, -0.1234, -0.1234]]
                output.shape = [4, 3]     # 3 = num_filters
                output.lod = [[0, 3, 4]]  # Remain the same


    Args:
        input (Variable): LoDTensor with shape :math:`(M, K)`, where M is the total time-step of mini-batch
            and K is hidden_size of input. Only lod_level of 1 is supported. The data type should be float32 or
            float64.
        num_filters (int): the number of filters.
        filter_size (int): the height of filter. Specified filter width is not supported, the width is
            hidden_size by default. Default: 3.
        filter_stride (int): stride of the filter. Currently only supports :attr:`stride` = 1.
        padding (bool): the parameter :attr:`padding` take no effect and will be discarded in the
            future. Currently, it will always pad input to make sure the length of the output is
            the same as input whether :attr:`padding` is set true or false. Because the length of
            input sequence may be shorter than :attr:`filter\_size`, which will cause the convolution
            result to not be computed correctly. These padding data will not be trainable or updated
T
tianshuo78520a 已提交
113
            while training. Default: True.
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        padding_start (int): It is used to indicate the start index for padding the input
            sequence, which can be negative. The negative number means to pad
            :attr:`|padding_start|` time-steps of all-zero data at the beginning of each instance.
            The positive number means to skip :attr:`padding_start` time-steps of each instance,
            and it will pad :math:`filter\_size + padding\_start - 1` time-steps of all-zero data
            at the end of the sequence to ensure that the output is the same length as the input.
            If set None, the same length :math:`\\frac{filter\_size}{2}` of data will be filled
            on both sides of the sequence. If set 0, the length of :math:`filter\_size - 1` data
            is padded at the end of each input sequence. Default: None.
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: LoDTensor with the same length as input. The data type is float32 or float64, which is same as input.

    Examples:

        .. code-block:: python

             import paddle.fluid as fluid

             x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
             x_conved = fluid.layers.sequence_conv(input=x, num_filters=2, filter_size=3, padding_start=-1)
    """

    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
147 148
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'sequence_conv')
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_variable_for_type_inference(dtype)
    if padding_start is None:
        padding_start = -int(filter_size // 2)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': padding_start,
            'contextLength': filter_size,
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def sequence_softmax(input, use_cudnn=False, name=None):
    """
    **Note**:
    
    **The input type of the OP must be LoDTensor. For Tensor, use:** :ref:`api_fluid_layers_softmax` 

    A LoD-tensor can be regarded as several sequences, and this op apply softmax algo on each sequence.
    The shape of input Tensor can be :math:`[N, 1]` or :math:`[N]`, where :math:`N`
    is the sum of the length of all sequences. Recommended usage: :math:`[N]`.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a LoD-Tensor with 6 sequences ([3, 2, 4, 1, 2, 3] - sequence length list in order), 
    the lod in the runtime is [[0, 3, 5, 9, 10, 12, 15]],
    then softmax will be computed among :math:`X[0:3,:],X[3:5,:],X[5:9,:],X[9:10,:],X[10:12,:],X[12:15,:]`,
    and :math:`N` turns out to be 15.

    .. code-block:: text

        *Case 1:

            Given:
                input.data = [0.7, 1, 0.6,
                              1.5, 1.1,
                              1.2, 0.2, 0.6, 1.9,
                              3.1,
                              2.5, 0.8,
                              0.1, 2.4, 1.3]
                input.lod = [[0, 3, 5, 9, 10, 12, 15]]
            then:
                 output.data = [0.30724832, 0.41474187, 0.2780098,
                                0.59868765, 0.40131235,
                                0.2544242, 0.09359743, 0.13963096, 0.5123474, 
                                1.,
                                0.84553474, 0.15446526,
                                0.06995796, 0.69777346, 0.23226859]
                 output.lod = [[0, 3, 5, 9, 10, 12, 15]]    
    

    Args:
        input (Variable):A LoDTensor with shape of  :math:`[N, 1]` or  :math:`[N]`, Recommended usage: :math:`[N]`. 
                         Supported data types: float32, float64. 
        use_cudnn (bool, optional): Use cudnn kernel or not. Effective only when the cudnn version of the paddle 
                                    library is installed and GPU is used for training or reasoning. Default: False.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. 
                              For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: A LoD-Tensor which has the same shape and data type with input.

    Examples:

        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax_1 = fluid.layers.sequence_softmax(input=x)  

             y = fluid.data(name='y', shape=[7],
                 dtype='float32', lod_level=1)
             x_sequence_softmax_2 = fluid.layers.sequence_softmax(input=y)  
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_softmax', **locals())
244 245
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'sequence_softmax')
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    dtype = helper.input_dtype()
    softmax_out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
    """
    **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use pool2d Op.(fluid.layers.** :ref:`api_fluid_layers_pool2d` ).

    This operator only supports LoDTensor as input. It will apply specified pooling
    operation on the input LoDTensor. It pools features of all time-steps of each
    sequence at the last lod_level using :attr:`pool_type` mentioned in the parameters,
    such as sum, average, sqrt, etc.

    It supports six pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`
    - last:    :math:`Out[i] = X_{N_i}`
    - first:   :math:`Out[i]` = X_0

    where :math:`N_i` is the length of i-th input sequence.

    .. code-block:: text

        Case 1:
        input is a 1-level LoDTensor and pad_value = 0.0:
            input.lod = [[0, 2, 5, 7, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        output is LoDTensor:
            out.shape = [4, 1]
            with condition out.shape[0] == len(x.lod[-1]) == 4

        for different pool_type:
            average: out.data = [[2.], [4.], [3.], [0.0]], where 2.=(1. + 3.)/2, 4.=(2. + 4. + 6.)/3, 3.=(5. + 1.)/2
            sum    : out.data = [[4.], [12.], [6.], [0.0]], where 4.=1. + 3., 12.=2. + 4. + 6., 6.=5. + 1.
            sqrt   : out.data = [[2.82], [6.93], [4.24], [0.0]], where 2.82=(1. + 3.)/sqrt(2), 6.93=(2. + 4. + 6.)/sqrt(3), 4.24=(5. + 1.)/sqrt(2)
            max    : out.data = [[3.], [6.], [5.], [0.0]], where 3.=max(1., 3.), 6.=max(2., 4., 6.), 5.=max(5., 1.)
            last   : out.data = [[3.], [6.], [1.], [0.0]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.)
            first  : out.data = [[1.], [2.], [5.], [0.0]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)

            and all above [0.0] at last of out.data is padding data.

        Case 2:
        input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
        where 0 means empty sequence.
        The first sequence contains 2 subsequence with length info [1, 2];
        The last sequence contains 3 subsequence with length info [1, 0, 3].
            input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        If pool_typ = sum, it will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
        output is LoDTensor:
            out.shape= [5, 1]
            out.lod = [[0, 2, 2, 5]]
            where out.shape[0] == len(x.lod[-1]) == 5
            sum: out.data = [[1.], [5.], [4.], [0.0], [12.]]
            where 1.=1., 5.=3. + 2., 4.=4., 0.0=pad_value, 12.=6. + 5. + 1.

    Args:
        input (variable): LoDTensor with lod_level no more than 2. The data type should be float32.
        pool_type (str): The pooling type that supports average, sum, sqrt, max, last or first.
        is_test (bool): Only works when :attr:`pool_type` is max. If set False, a temporary Tenosr maxIndex is
            created to record the index information corresponding to the maximum value, which is used for backward
            gradient calculation in the training phase. Default: False.
        pad_value (float): Used to pad the pooling result for empty input sequence. Default: 0.0

    Returns:
        Variable: LoDTensor after pooling with data type float32.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
            avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
            sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
            sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
            max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
            last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
            first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
342
    check_variable_and_dtype(input, 'input', ['float32'], 'sequence_pool')
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    helper = LayerHelper('sequence_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })

    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

    return pool_out


@templatedoc()
def sequence_concat(input, name=None):
    """
    **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use concat Op.(fluid.layers.** :ref:`api_fluid_layers_concat` ).

    This operator only supports LoDTensor as input. It concatenates the multiple LoDTensor from input by the LoD information,
    and outputs the concatenated LoDTensor.

    .. code-block:: text

        input is a list of LoDTensor:
            input = [x1, x2]
        where:
            x1.lod = [[0, 3, 5]]
            x1.data = [[1], [2], [3], [4], [5]]
            x1.shape = [5, 1]

            x2.lod = [[0, 2, 4]]
            x2.data = [[6], [7], [8], [9]]
            x2.shape = [4, 1]
        and should satisfy: len(x1.lod[0]) == len(x2.lod[0])

        output is LoDTensor:
            out.lod = [[0, 3+2, 5+4]]
            out.data = [[1], [2], [3], [6], [7], [4], [5], [8], [9]]
            out.shape = [9, 1]

    Args:
        input(list of Variable): List of LoDTensor to be concatenated. The length of each LoDTensor should be same.
            The data type can be float32, float64 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Output the concatenated LoDTensor. The data type is same as input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[-1, 10], dtype='float32', lod_level=1)
            y = fluid.data(name='y', shape=[-1, 10], dtype='float32', lod_level=1)
            out = fluid.layers.sequence_concat(input=[x, y])
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_concat', **locals())
414 415 416 417 418 419 420 421 422 423

    check_type(input, 'input', list, 'fluid.layers.sequence_concat')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'fluid.layers.sequence_concat')
            check_dtype(input_x.dtype, 'input[' + str(i) + ']',
                        ['int64', 'float32', 'float64'],
                        'fluid.layers.sequence_concat')

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


def sequence_first_step(input):
    """
    This operator only supports LoDTensor as input. Given the input LoDTensor, it will
    select first time-step feature of each sequence as output.

    .. code-block:: text

       Case 1:
        input is 1-level LoDTensor:
            input.lod = [[0, 2, 5, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        output is a LoDTensor:
            out.shape = [3, 1]
            out.shape[0] == len(x.lod[-1]) == 3
            out.data = [[1.], [2.], [5.]], where 1.=first(1., 3.), 2.=first(2., 4., 6.), 5.=first(5., 1.)

        Case 2:
        input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
        where 0 means empty sequence.
        The first sequence contains 2 subsequence with length info [1, 2];
        The last sequence contains 3 subsequence with length info [1, 0, 3].
            input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
        output is a LoDTensor:
            out.shape= [5, 1]
            out.lod = [[0, 2, 2, 5]]
            out.shape[0] == len(x.lod[-1]) == 5
            out.data = [[1.], [3.], [4.], [0.0], [6.]]
            where 1.=first(1.), 3.=first(3., 2.), 4.=first(4.), 0.0 = pad_value, 6.=first(6., 5., 1.)

    Args:
        input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32.

    Returns:
        Variable: LoDTensor consist of the sequence's first step vector. The data type is float32.

    Examples:

        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
    return sequence_pool(input=input, pool_type="first")


def sequence_last_step(input):
    """
    This operator only supports LoDTensor as input. Given the input LoDTensor, it will
    select last time-step feature of each sequence as output.

    .. code-block:: text

        Case 1:
        input is 1-level LoDTensor:
            input.lod = [[0, 2, 5, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        output is a LoDTensor:
            out.shape = [3, 1]
            out.shape[0] == len(x.lod[-1]) == 3
            out.data = [[3.], [6.], [1.]], where 3.=last(1., 3.), 6.=last(2., 4., 6.), 1.=last(5., 1.)

        Case 2:
        input is a 2-level LoDTensor containing 3 sequences with length info [2, 0, 3],
        where 0 means empty sequence.
        The first sequence contains 2 subsequence with length info [1, 2];
        The last sequence contains 3 subsequence with length info [1, 0, 3].
            input.lod = [[0, 2, 2, 5], [0, 1, 3, 4, 4, 7]]
            input.data = [[1.], [3.], [2.], [4.], [6.], [5.], [1.]]
            input.shape = [7, 1]

        It will apply pooling on last lod_level [0, 1, 3, 4, 4, 7]. pad_value = 0.0
        output is a LoDTensor:
            out.shape= [5, 1]
            out.lod = [[0, 2, 2, 5]]
            out.shape[0] == len(x.lod[-1]) == 5
            out.data = [[1.], [2.], [4.], [0.0], [1.]]
            where 1.=last(1.), 2.=last(3., 2.), 4.=last(4.), 0.0 = pad_value, 1=last(6., 5., 1.)


    Args:
        input(Variable): LoDTensor with lod_level no more than 2. The data type should be float32.

    Returns:
        Variable: LoDTensor consist of the sequence's last step vector. The data type is float32.

    Examples:

        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
    return sequence_pool(input=input, pool_type="last")


def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text

              - Case:

            Given the input Variable **input**:

                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),

            with offset.data = [[0], [1]] and length.data = [[2], [1]],

            the output Variable will be

                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).

    Note:
          The first dimension size of **input**, **offset** and **length**
          should be equal. The **offset** should start from 0.

    Args:
        input(Variable): LoDTensor, The input Variable which consists of the complete
568 569
                         sequences.The data type can be float32, float64, int32 or int64
        offset(Variable): LoDTensor, The offset to slice each sequence. The data
570
                         type is int32 or int64.
571
        length(Variable): LoDTensor, The length of each subsequence. The data
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
                         type is int32 or int64.
        name(str|None): The default value is None.  Normally there is no need
                        for user to set this property.  For more information,
                        please refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output subsequences.

    Examples:

        .. code-block:: python

             import paddle.fluid as fluid
             import numpy as np
             seqs = fluid.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
                                                   length=length)
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper("sequence_slice", **locals())
596 597 598 599 600 601 602 603 604

    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'sequence_slice')
    check_variable_and_dtype(offset, 'offset', ['int32', 'int64'],
                             'sequence_slice')
    check_variable_and_dtype(length, 'length', ['int32', 'int64'],
                             'sequence_slice')

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


def sequence_expand(x, y, ref_level=-1, name=None):
    """Sequence Expand Layer. This layer will expand the input variable ``x`` \
        according to specified level ``ref_level`` lod of ``y``. Please note that \
        the lod level of ``x`` is at most 1. If the lod level of ``x`` is 1, than \
        the size of lod of ``x`` must be equal to the length of ``ref_level`` lod \
        of ``y``. If the lod level of ``x`` is 0, then the first dim of ``x`` should \
        be equal to the size of ``ref_level`` of ``y``. The rank of **x** is at least 2. \
        When rank of ``x`` is greater than 2, then it would be viewed as a 2-D tensor.

    Please note that the input ``x`` should be LodTensor or Tensor, \
        and input ``y`` must be LodTensor.

    Following examples will explain how sequence_expand works:

    .. code-block:: text

        Case 1

        Consider 2 sequences [a][b] and [c][d], now we want to expand them to [a][b], [a][b], [c][d] and [c][d].
        Sequence [a][b] expand twice and [c][d] expands twice, so the lod which according to is [2, 2].

        Input x is a 1-level LoDTensor:
            x.lod  = [[2,        2]]    #lod based on length may be easier to understand
            x.data = [[a], [b], [c], [d]]
            x.dims = [4, 1]

        input y is a LoDTensor:
            y.lod = [[2,    2],    #the 0th level lod, according to this level
                     [3, 3, 1, 1]] #the 1st level lod, it has nothing to do with this level

        ref_level: 0

        then output is a 1-level LoDTensor out:
T
tianshuo78520a 已提交
654
            out.lod =  [[2,        2,        2,        2]]    #lod based on offset
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
            out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
            out.dims = [8, 1]


        Case 2

        Consider 3 sequences [a], [b], [c], now we want to expand them to [a][a], [c][c][c].
        It's obvious that the lod info of expanded sequences is [2, 0, 3].

        x is a Tensor:
            x.data = [[a], [b], [c]]
            x.dims = [3, 1]

        y is a LoDTensor:
            y.lod = [[2, 0, 3]]

        ref_level: -1

        then output is a 1-level LodTensor:
            out.data = [[a], [a], [c], [c], [c]]
            out.dims = [5, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor, with the \
            dims ``[M, K]``. The lod level is at most 1. The data type should be \
680
            float32, float64, int32 or int64.
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
        y (Variable): The input variable which is a LoDTensor, the lod level is \
            at least 1.
        ref_level (int): Lod level of ``y`` to be referred by ``x``. If set to -1, \
                         refer the last level of lod.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default. 

    Returns: The expanded variable which is a LoDTensor, with dims ``[N, K]``. \
            ``N`` depends on the lod info of ``x`` and ``y``. \
            The data type is same as input.

    Return Type: Variable

    Examples:
        .. code-block:: python
	
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            x = fluid.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.data(name='y', shape=[8, 1],
                        dtype='float32', lod_level=1)
            out = layers.sequence_expand(x=x, y=y, ref_level=0)

            exe = fluid.Executor(fluid.CPUPlace())
            place = fluid.CPUPlace()

            np_data = np.array([[1], [2], [3], [4]]).astype('float32')
            x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
            print(x_lod_tensor)
            #lod: [[0, 2, 4]]
            #    dim: 4, 1
            #    layout: NCHW
            #    dtype: float
            #    data: [1 2 3 4]

            np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
	    y_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2], [3,3,1,1]], place)
            print(y_lod_tensor)
            #lod: [[0, 2, 4][0, 3, 6, 7, 8]]
            #    dim: 8, 1
            #    layout: NCHW
            #    dtype: int64_t
            #    data: [0 0 1 1 1 1 1 0]

            out_main = exe.run(fluid.default_main_program(),
                            feed={'x': x_lod_tensor, 'y': y_lod_tensor},
                            fetch_list=[out], return_numpy=False)
            print(out_main[0])
            #lod: [[0, 2, 4, 6, 8]]
            #    dim: 8, 1
            #    layout: NCHW
            #    dtype: float
            #    data: [1 2 1 2 3 4 3 4]
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
740 741
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'sequence_expand')
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
    helper = LayerHelper('sequence_expand', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
    return tmp


def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This OP will expand the input variable ``x`` \
        according to the zeroth level lod of ``y``. Current implementation requires \
        the level number of ``y``'s lod must be 1, and the first dimension of \
        ``x`` should be equal to the size of ``y``'s zeroth level lod, thus \
        the expanded LodTensor has the same lod info as ``y``. The expanded result \
        has nothing to do with ``x``'s lod, so the lod of Input(X) is not considered.

    Please note that the input ``x`` should be LodTensor or Tensor, \
        and input ``y`` must be LodTensor.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        Case 1:

        Consider 4 sequences [a], [b], [c], [d], now we want to expand them to [a][a][a], [b][b][b], [c] and [d].
        It's obvious that the lod info of expanded sequences is [0, 3, 6, 7, 8].
        Given a 1-level LodTensor ``x``: 
            x.data = [[a], [b], [c], [d]]
            x.dims = [4, 1]
        and input ``y``
            y.lod = [[3, 3, 1, 1]] #lod based on length may be easier to understand

        then we get 1-level LoDTensor out:
            Out.lod =  [[0,            3,              6,  7,  8]] #based on offset
            Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
            Out.dims = [8, 1]


        Case 2:

        Given a common Tensor ``x``:
            x.data = [[a, b], [c, d], [e, f]]
            x.dims = [3, 2]
        and input ``y``:
            y.lod = [[0, 2, 3, 6]]

        then we get a 1-level LoDTensor:
            out.lod =  [[0,             2,     3,                    6]]
            out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
            out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor, with the \
800
            dims ``[M, K]``. The data type should be float32, float64, int32 \
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
            or int64.
        y (Variable): The input variable which is a LoDTensor with 1-level lod.
        name (str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

    Returns: The expanded variable which is a LoDTensor with the dims ``[N, K]``. \
            ``N`` depends on the lod of ``y``, and the lod level must be 1. \
            The data type is same as input.

    Return Type: Variable

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            x = fluid.data(name='x', shape=[4, 1], dtype='float32')
            y = fluid.data(name='y', shape=[8, 1], dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)

            exe = fluid.Executor(fluid.CPUPlace())
            place = fluid.CPUPlace()

            np_data = np.array([[1], [2], [3], [4]]).astype('float32')
            x_lod_tensor = fluid.create_lod_tensor(np_data, [[2, 2]], place)
            print(x_lod_tensor)
            #lod: [[0, 2, 4]]
            #    dim: 4, 1
            #    layout: NCHW
            #    dtype: float
            #    data: [1 2 3 4]

            np_data = np.array([[1], [2], [3], [4], [5], [6], [7], [8]]).astype('float32')
	    y_lod_tensor = fluid.create_lod_tensor(np_data, [[3,3,1,1]], place)
            print(y_lod_tensor)
            #lod: [[0, 3, 6, 7, 8]]
            #    dim: 8, 1
            #    layout: NCHW
            #    dtype: int64_t
            #    data: [0 0 1 0 1 1 1 0]

            out_main = exe.run(fluid.default_main_program(),
                            feed={'x': x_lod_tensor, 'y': y_lod_tensor},
                            fetch_list=[out], return_numpy=False)
            print(out_main[0])
            #lod: [[0, 3, 6, 7, 8]]
            #    dim: 8, 1
            #    layout: NCHW
            #    dtype: float
            #    data: [1 1 1 2 2 2 3 4]
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
857 858 859
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'sequence_expand_as')
    check_type(y, 'y', Variable, 'sequence_expand_as')
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


def sequence_pad(x, pad_value, maxlen=None, name=None):
    """
    This layer padding the sequences in a same batch to a common length (according \
         to ``maxlen``). The padding value is defined by ``pad_value``, and will be \
        appended to the tail of sequences. The result is a Python tuple ``(Out, Length)``: \
        the LodTensor ``Out`` is the padded sequences, and LodTensor ``Length`` is \
T
tianshuo78520a 已提交
877
        the length information of input sequences. For removing padding data (unpadding \
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	operation), See :ref:`api_fluid_layers_sequence_unpad` .

    Please note that the input ``x`` should be LodTensor.

    .. code-block:: text

        Case 1:
        Given input 1-level LoDTensor x:
            x.lod = [[0,  2,   5]]
            x.data = [[a],[b],[c],[d],[e]]
        pad_value:
            pad_value.data = [0]
        maxlen = 4

        the output tuple (Out, Length):
            Out.data = [[[a],[b],[0],[0]],[[c],[d],[e],[0]]]
            Length.data = [2, 3]      #Original sequences length

        Case 2:
        Given input 1-level LoDTensor x:
            x.lod =  [[0,             2,                     5]]
            x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
        pad_value:
            pad_value.data = [0]
T
tianshuo78520a 已提交
902
        default maxlen = None, (the virtual value is 3, according to the shape of x)
903 904 905 906 907 908 909 910 911 912 913

        the output tuple (Out, Length):
            Out.data = [[[a1,a2],[b1,b2],[0,0]],[[c1,c2],[d1,d2],[e1,e2]]]
            Length.data = [2, 3]

        Case 3:
        Given input 1-level LoDTensor x:
            x.lod =  [[0,             2,                     5]]
            x.data = [[a1,a2],[b1,b2],[c1,c2],[d1,d2],[e1,e2]]
        pad_value:
            pad_value.data = [p1,p2]
T
tianshuo78520a 已提交
914
        default maxlen = None, (the virtual value is 3)
915 916 917 918 919 920 921 922 923

        get tuple (Out, Length):
            Out.data = [[[a1,a2],[b1,b2],[p1,p2]],[[c1,c2],[d1,d2],[e1,e2]]]
            Length.data = [2, 3]



    Args:
        x (Variable): Input 1-level LodTensor with dims ``[M, K]``. The batch \
T
tianshuo78520a 已提交
924
            size is described by lod infor (the number of sequences ). \
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
            The data type should be float32, float64, int8, int32 or int64.
        pad_value (Variable): Padding value. It can be a scalar or a 1D tensor \
            with length ``K``. If it's a scalar, it will be automatically broadcasted \
            to a Tensor. The data type should be as same as ``x``.
        maxlen (int, optional): The length of padded sequences, None by default. \
            When it is None, all sequences will be padded up to the length of the \
            longest one among them; when it a certain positive value, it must be \
            greater than the length of the longest original sequence.
        name (str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

    Returns: A Python tuple (Out, Length): the 1st is a 0 level LodTensor \
            ``Out``, with the shape ``[batch_size, maxlen, K]``; the second is the original \
            sequences length infor ``Length``, which should be a 0-level 1D LodTensor. \
            The size of ``Length`` is equal to batch size, and the data type is int64.

    Return Type: tuple

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(
                input=numpy.array([0.0], dtype=numpy.float32))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_pad', input=x, **locals())
959 960 961 962 963
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'fluid.layers.sequence_pad')
    check_variable_and_dtype(pad_value, 'pad_value',
                             ['float32', 'float64', 'int32', 'int64'],
                             'fluid.layers.sequence_pad')
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out,
                 'Length': length},
        attrs={'padded_length': maxlen})
    return out, length


def sequence_unpad(x, length, name=None):
    """
    **Note**:
    
    **The input of the OP is Tensor and the output is LoDTensor.  For padding operation, See:**  :ref:`api_fluid_layers_sequence_pad`  
     
    The OP removes the padding data from the input based on the length information and returns a LoDTensor.

    .. code-block:: text

	Case 1:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

T
tianshuo78520a 已提交
1000
	in which there are 3 sequences padded to length 5, and the actual length
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	specified by input Variable **length**:

	    length.data = [2, 3, 4],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
	    out.lod = [[0, 2, 5, 9]]

    Args:
        x(Variable): A Tensor which contains padding data, and its shape size can not be less than 2.
                     Supported data types: float32, float64, int32, int64.
        length(Variable): A 1D Tensor that stores the actual length of each sample, and the Tensor 
                          has the same shape with the 0th dimension of the X . Supported data types: int64.
        name(str|None):  The default value is None.  Normally there is no need for user to set this property.  
                         For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Variable: A LoDTensor whose recursive sequence length is consistent with the information of the length parameter and it has the same data type with input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # pad data
            x = fluid.data(name='x', shape=[10, 5], dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0.0], dtype=numpy.float32))
            pad_data, len = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
            
            # unpad data
            unpad_data = fluid.layers.sequence_unpad(x=pad_data, length=len)
    """

    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_unpad', input=x, **locals())
1039 1040 1041 1042
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'fluid.layers.sequence_unpad')
    check_variable_and_dtype(length, 'length', ['int64'],
                             'fluid.layers.sequence_unpad')
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


def sequence_reshape(input, new_dim):
    """
    **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reshape Op.(fluid.layers.** :ref:`api_fluid_layers_reshape` ).

    This operator only supports LoDTensor as input. Given :attr:`new_dim` ,
    it will compute new shape according to original length of each sequence,
    original dimensions and :attr:`new_dim` . Then it will output a new LoDTensor
    containing :attr:`new_dim` . Currently it only supports 1-level LoDTensor.
    Please make sure that (original length * original dimensions) can be divided
    by the :attr:`new_dim` with no remainder for each sequence.

    .. code-block:: text

        input is a LoDTensor:
            input.lod  = [[0, 2, 6]]
            input.data = [[1,  2], [3,  4],
                          [5,  6], [7,  8],
                          [9, 10], [11, 12]]
            input.shape = [6, 2]

        set new_dim = 4
        out is a LoDTensor:
            out.lod  = [[0, 1, 3]]
            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
            out.shape = [3, 4]


    Args:

       input (Variable): 1-level LoDTensor with shape :math:`[M, K]` . The data type should
            be int32, int64, float32 or float64.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.

    Returns:
        Variable: Reshaped LoDTensor according to new dimension. The data type is same as input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[None, 16], dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_reshape', **locals())
1104 1105 1106
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'fluid.layers.sequence_reshape')
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
    out = helper.create_variable_for_type_inference(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out


def sequence_scatter(input, index, updates, name=None):
    """
    **Note**:
    
    **The index and updates parameters of the OP must be LoDTensor.**
     
T
tianshuo78520a 已提交
1122
    Plus the updates data to the corresponding input according to the index.
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
 
    The updated algorithm is as follows: output[instance_index][index [pos]] = input[instance_index][index [pos]] +  updates[pos], 
    where instance_idx is the K sample corresponding to pos in batch.

    The value of output[i][j] depends on whether j can be found in the i+1th interval of the index. If found, 
    out[i][j] = input[i][j] + update[m] [n], otherwise, out[i][j] = input[i][j].

    For example, in the following example, the lod information for index is divided into three sequences. Among 
    them, because the element 0 can be found in the first interval of the index, it is updated with the value of 
    the corresponding position of the updates, out[0][0] = input[0][0]+updates[0][0] . Because element 1 cannot 
    be found in the third interval of index, out[2][1] = input[2][1].

    .. code-block:: text
        
        *Case 1:

            Given:
                input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                              [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                              [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
                              input.dims = [3, 6]

                index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
                index.lod =  [[0,        3,                       8,                 12]]

                updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
                updates.lod =  [[  0,            3,                                 8,                         12]]

            Then:
                out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                            [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                            [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
                out.dims = X.dims = [3, 6]

    Args:
        input (Variable): A Tensor with shape of  :math:`[N, k_1... k_n]`. Supported data types: float32, float64, int32, int64.
1159
        index (Variable):  A LoDTensor contains index information. Its LoD level must be 1 and its data type can be int32 or int64.
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        updates (Variable): A LodTensor contains updates information. It has the same  LoD level with the index and has the 
                            same data type  with the input. Supported data types: float32, float64, int32, int64.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, 
                              please refer to :ref:`api_guide_Name`

    Returns:
        Variable: A Tensor which has been updated. It has the same shape and data type with input.

    Examples:

        .. code-block:: python
	
            import paddle.fluid as fluid

            input = fluid.data( name="x", shape=[None, 3, 6], dtype='float32' )
            index = fluid.data( name='index', shape=[12, 1],  dtype='int64', lod_level=1)
            updates = fluid.data( name='updates', shape=[12, 1], dtype='float32', lod_level=1)
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper('sequence_scatter', **locals())
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64'],
                             'sequence_scatter')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'sequence_scatter')
    check_variable_and_dtype(updates, 'updates',
                             ['float32', 'float64', 'int32', 'int64'],
                             'sequence_scatter')

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


def sequence_enumerate(input, win_size, pad_value=0, name=None):
    """
    Generate a new sequence for the input index sequence with \
        shape ``[d_1, win_size]``, which enumerates all the \
        sub-sequences with length ``win_size`` of the input with \
        shape ``[d_1, 1]``, and padded by ``pad_value`` if necessary in generation.

    Please note that the `input` must be LodTensor.

    .. code-block:: text

        Input x:
            x.lod = [[0, 3, 5]]
            x.data = [[1], [2], [3], [4], [5]]
            x.dims = [5, 1]

        Attrs:
            win_size = 2
            pad_value = 0

        Output:
            out.lod = [[0, 3, 5]]
            out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            out.dims = [5, 2]


    Args:
        input (Variable): The input variable which is a index sequence, \
            which should be a LodTensor with shape ``[d_1, 1]`` and 1-level lod info. \
1233
            The data type should be int32 or int64.
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int, optional): The padding value, default 0.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

    Returns: The enumerate sequence variable which is a LoDTensor with \
            shape ``[d_1, win_size]`` and 1-level lod info. \
            The data type is same as ``input``.

    Return Type: Variable

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.data(name='x', shape=[-1, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
1256 1257
    check_variable_and_dtype(input, 'input', ['int32', 'int64'],
                             'sequence_enumerate')
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    helper = LayerHelper('sequence_enumerate', **locals())
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
    return out


def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:

    .. math::

        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    .. code-block:: text

        Case:

        Consider input:
            x = [3, 1, 1, 0]    max_len = 4

        then we get out:
            mask = [[1, 1, 1, 0],
                    [1, 0, 0, 0],
                    [1, 0, 0, 0],
                    [0, 0, 0, 0]]

    Args:
        x (Variable): Input tensor of sequence_mask layer, \
            whose elements are integers less than :code:`maxlen`. \
            Tensor or LodTensor with shape [d_1, d_2, ..., d_n].
        maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str, optional): Data type of the output, \
             ``int64`` by default.
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.

    Returns: The output sequence mask. Tensor or LodTensor with shape [d_1, d_2, ..., d_n, maxlen] \
            and data type of :code:`dtype`. The data type should be float32, float64, int8, \
            int32 or int64.

    Return Type: Variable

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = fluid.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

    """
    helper = LayerHelper('sequence_mask', **locals())
1326
    out = helper.create_variable_for_type_inference(dtype=dtype)
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

    helper.append_op(
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
    return out


@templatedoc()
def sequence_reverse(x, name=None):
    """
    **Notes: The Op only receives LoDTensor as input. If your input is Tensor, please use reverse Op.(fluid.layers.** :ref:`api_fluid_layers_reverse` ).

    This operator only supports LoDTensor as input. It will reverse each sequence for input LoDTensor.
    Currently it only supports 1-level LoDTensor. This operator is very useful when building a
    reverse :ref:`api_fluid_layers_DynamicRNN` network.

    .. code-block:: text

        input(x) is a LoDTensor:
            x.lod  = [[0, 2, 5]]
            x.data = [[1,  2,  3,  4],
                      [5,  6,  7,  8],
                      [9, 10, 11, 12],
                      [13,14, 15, 16],
                      [17,18, 19, 20]]
            x.shape = [5, 4]

        output LoDTensor with same shape and LoD info:
            out.lod  = [[0, 2, 5]]
            out.data = [[5,  6,  7,  8],
                        [1,  2,  3,  4],
                        [17,18, 19, 20],
                        [13,14, 15, 16],
                        [9, 10, 11, 12]]
            out.shape = [5, 4]

    Args:
        x(Variable): LoDTensor with 1-level LoD info. Currently it only supports 1-level LoDTensor.
            The data type should be float32, float64, int8, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: LoDTensor reversed from input. The data type is same with input.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[None, 10], dtype='float32', lod_level=1)
            x_reversed = fluid.layers.sequence_reverse(x)
    """
    assert not in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
    helper = LayerHelper("sequence_reverse", **locals())
1391 1392 1393
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'fluid.layers.sequence_reverse')
1394
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1395 1396 1397 1398 1399 1400 1401

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out