test_transpose_op.py 7.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

X
xzl 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
X
xzl 已提交
23 24


25
class TestTransposeOp(OpTest):
X
xzl 已提交
26
    def setUp(self):
27
        self.init_op_type()
28
        self.initTestCase()
29
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
30 31 32 33
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
34
        self.outputs = {
35
            'XShape': np.random.random(self.shape).astype("float64"),
36 37
            'Out': self.inputs['X'].transpose(self.axis)
        }
38

39 40 41 42
    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

43
    def test_check_output(self):
44
        self.check_output(no_check_set=['XShape'])
45 46

    def test_check_grad(self):
C
chengduo 已提交
47
        self.check_grad(['X'], 'Out')
48 49

    def initTestCase(self):
Z
zhupengyang 已提交
50
        self.shape = (3, 40)
51 52 53
        self.axis = (1, 0)


54 55
class TestCase0(TestTransposeOp):
    def initTestCase(self):
Z
zhupengyang 已提交
56
        self.shape = (100, )
57 58 59
        self.axis = (0, )


60 61
class TestCase1(TestTransposeOp):
    def initTestCase(self):
Z
zhupengyang 已提交
62
        self.shape = (3, 4, 10)
63 64 65 66 67 68 69 70
        self.axis = (0, 2, 1)


class TestCase2(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)

X
xzl 已提交
71

72 73 74 75
class TestCase3(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
X
xzl 已提交
76 77


78 79 80 81
class TestCase4(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
X
xzl 已提交
82 83


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
class TestCase5(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 16, 96)
        self.axis = (0, 2, 1)


class TestCase6(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 12, 16)
        self.axis = (3, 1, 2, 0)


class TestCase7(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 2, 16)
        self.axis = (0, 1, 3, 2)


102
class TestTransposeOpError(unittest.TestCase):
103 104
    def test_errors(self):
        with program_guard(Program(), Program()):
105
            x = fluid.layers.data(name='x', shape=[10, 5, 3], dtype='float64')
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

            def test_x_Variable_check():
                # the Input(x)'s type must be Variable
                fluid.layers.transpose("not_variable", perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_Variable_check)

            def test_x_dtype_check():
                # the Input(x)'s dtype must be one of [float16, float32, float64, int32, int64]
                x1 = fluid.layers.data(
                    name='x1', shape=[10, 5, 3], dtype='bool')
                fluid.layers.transpose(x1, perm=[1, 0, 2])

            self.assertRaises(TypeError, test_x_dtype_check)

            def test_perm_list_check():
                # Input(perm)'s type must be list
                fluid.layers.transpose(x, perm="[1, 0, 2]")

            self.assertRaises(TypeError, test_perm_list_check)

            def test_perm_length_and_x_dim_check():
                # Input(perm) is the permutation of dimensions of Input(input)
                # its length should be equal to dimensions of Input(input)
                fluid.layers.transpose(x, perm=[1, 0, 2, 3, 4])

            self.assertRaises(ValueError, test_perm_length_and_x_dim_check)

            def test_each_elem_value_check():
                # Each element in Input(perm) should be less than Input(x)'s dimension
                fluid.layers.transpose(x, perm=[3, 5, 7])

            self.assertRaises(ValueError, test_each_elem_value_check)


141 142 143 144
class TestTAPI(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10], dtype="float64", name="data")
145
            data_t = fluid.layers.t(data)
146 147 148 149 150 151 152 153 154
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[10, 5], dtype="float64", name="data")
155
            data_t = fluid.layers.t(data)
156 157 158 159 160 161 162 163 164
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10, 5]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            data = fluid.data(shape=[1, 5], dtype="float64", name="data")
165
            data_t = fluid.layers.t(data)
166 167 168 169 170 171 172 173 174 175
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([1, 5]).astype("float64")
            result, = exe.run(feed={"data": data_np}, fetch_list=[data_t])
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
176
            z = fluid.layers.t(data)
177 178 179 180 181 182 183
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
184
            z = fluid.layers.t(data)
185 186 187 188 189 190 191
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([1, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
192
            z = fluid.layers.t(data)
193 194 195 196 197 198 199 200 201
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name='x', shape=[10, 5, 3], dtype='float64')

            def test_x_dimension_check():
202
                fluid.layers.t(x)
203 204 205 206

            self.assertRaises(ValueError, test_x_dimension_check)


X
xzl 已提交
207 208
if __name__ == '__main__':
    unittest.main()