roi_align_op.cu 16.1 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
FDInSky 已提交
15
#include <vector>
16
#include "paddle/fluid/memory/memory.h"
J
jerrywgz 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/operators/roi_align_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <class T>
J
jerrywgz 已提交
35 36
__device__ T BilinearInterpolate(const T* input_data, const int height,
                                 const int width, T y, T x) {
J
jerrywgz 已提交
37 38 39
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return 0;
  }
J
jerrywgz 已提交
40 41
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
J
jerrywgz 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  int y_low = static_cast<int>(y);
  int x_low = static_cast<int>(x);
  int y_high;
  int x_high;
  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = static_cast<T>(y_low);
  } else {
    y_high = y_low + 1;
  }
  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = static_cast<T>(x_low);
  } else {
    x_high = x_low + 1;
  }
  T ly = y - y_low, lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  T v1 = input_data[y_low * width + x_low];
  T v2 = input_data[y_low * width + x_high];
  T v3 = input_data[y_high * width + x_low];
  T v4 = input_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

template <class T>
J
jerrywgz 已提交
72 73 74 75
__device__ void BilinearInterpolateGradient(const int height, const int width,
                                            T y, T x, T* w1, T* w2, T* w3,
                                            T* w4, int* x_low, int* x_high,
                                            int* y_low, int* y_high) {
J
jerrywgz 已提交
76 77 78 79
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    return;
  }

J
jerrywgz 已提交
80 81
  y = y <= 0 ? 0 : y;
  x = x <= 0 ? 0 : x;
82 83 84 85 86
  *y_low = static_cast<int>(y);
  *x_low = static_cast<int>(x);
  if (*y_low >= height - 1) {
    *y_high = *y_low = height - 1;
    y = static_cast<T>(*y_low);
J
jerrywgz 已提交
87
  } else {
88
    *y_high = *y_low + 1;
J
jerrywgz 已提交
89
  }
90 91 92
  if (*x_low >= width - 1) {
    *x_high = *x_low = width - 1;
    x = static_cast<T>(*x_low);
J
jerrywgz 已提交
93
  } else {
94
    *x_high = *x_low + 1;
J
jerrywgz 已提交
95
  }
96
  T ly = y - *y_low, lx = x - *x_low;
J
jerrywgz 已提交
97
  T hy = 1. - ly, hx = 1. - lx;
98
  *w1 = hy * hx, *w2 = hy * lx, *w3 = ly * hx, *w4 = ly * lx;
J
jerrywgz 已提交
99 100 101 102 103 104 105 106 107

  return;
}

template <class T>
__global__ void GPUROIAlignForward(
    const int nthreads, const T* input_data, const T* input_rois,
    const float spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
108 109
    const int sampling_ratio, int* roi_batch_id_data, T* output_data,
    const bool continuous_coordinate) {
110
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
111 112 113 114 115 116 117 118
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
    int c = (i / pooled_width / pooled_height) % channels;
    int n = i / pooled_width / pooled_height / channels;

    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

119 120 121 122 123
    T roi_offset = continuous_coordinate ? static_cast<T>(0.5) : 0;
    T roi_xmin = offset_input_rois[0] * spatial_scale - roi_offset;
    T roi_ymin = offset_input_rois[1] * spatial_scale - roi_offset;
    T roi_xmax = offset_input_rois[2] * spatial_scale - roi_offset;
    T roi_ymax = offset_input_rois[3] * spatial_scale - roi_offset;
J
jerrywgz 已提交
124

125 126
    T roi_width = roi_xmax - roi_xmin;
    T roi_height = roi_ymax - roi_ymin;
127 128 129 130
    if (!continuous_coordinate) {
      roi_width = max(roi_width, static_cast<T>(1.));
      roi_height = max(roi_height, static_cast<T>(1.));
    }
131

J
jerrywgz 已提交
132 133 134 135 136 137 138 139 140 141 142
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input_data =
        input_data + (roi_batch_ind * channels + c) * height * width;

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
143
    const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1);
J
jerrywgz 已提交
144 145 146 147 148 149 150 151 152
    T output_val = 0;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
      const T y = roi_ymin + ph * bin_size_h +
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_xmin + pw * bin_size_w +
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
J
jerrywgz 已提交
153
        T val = BilinearInterpolate(offset_input_data, height, width, y, x);
J
jerrywgz 已提交
154 155 156 157 158 159 160 161 162
        output_val += val;
      }
    }
    output_val /= count;
    output_data[i] = output_val;
  }
}

template <typename T>
163 164 165 166 167 168
__global__ void GPUROIAlignBackward(
    const int nthreads, const T* input_rois, const T* out_grad,
    const int num_rois, const float spatial_scale, const int channels,
    const int height, const int width, const int pooled_height,
    const int pooled_width, const int sampling_ratio, int* roi_batch_id_data,
    T* input_grad, const bool continuous_coordinate) {
169
  CUDA_KERNEL_LOOP(i, nthreads) {
J
jerrywgz 已提交
170 171
    int pw = i % pooled_width;
    int ph = (i / pooled_width) % pooled_height;
172
    int c = (i / pooled_width / pooled_height) % channels;
J
jerrywgz 已提交
173 174 175 176
    int n = i / pooled_width / pooled_height / channels;
    const T* offset_input_rois = input_rois + n * kROISize;
    int roi_batch_ind = roi_batch_id_data[n];

177 178 179 180 181 182 183 184
    T roi_offset = continuous_coordinate ? T(0.5) : 0;
    T roi_xmin = offset_input_rois[0] * spatial_scale - roi_offset;
    T roi_ymin = offset_input_rois[1] * spatial_scale - roi_offset;
    T roi_xmax = offset_input_rois[2] * spatial_scale - roi_offset;
    T roi_ymax = offset_input_rois[3] * spatial_scale - roi_offset;

    T roi_width = roi_xmax - roi_xmin;
    T roi_height = roi_ymax - roi_ymin;
185 186 187 188
    if (!continuous_coordinate) {
      roi_width = max(roi_width, static_cast<T>(1.));
      roi_height = max(roi_height, static_cast<T>(1.));
    }
J
jerrywgz 已提交
189 190 191
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

192
    T* offset_input_grad =
J
jerrywgz 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206
        input_grad + (roi_batch_ind * channels + c) * height * width;

    const T* offset_out_grad =
        out_grad + (n * channels + c) * pooled_height * pooled_width;
    const T out_grad_this_bin = offset_out_grad[ph * pooled_width + pw];

    int roi_bin_grid_h = (sampling_ratio > 0)
                             ? sampling_ratio
                             : ceil(roi_height / pooled_height);
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    const T count = roi_bin_grid_h * roi_bin_grid_w;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) {
207
      const T y = roi_ymin + ph * bin_size_h +
J
jerrywgz 已提交
208 209 210
                  static_cast<T>(iy + .5f) * bin_size_h /
                      static_cast<T>(roi_bin_grid_h);
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
211
        const T x = roi_xmin + pw * bin_size_w +
J
jerrywgz 已提交
212 213
                    static_cast<T>(ix + .5f) * bin_size_w /
                        static_cast<T>(roi_bin_grid_w);
214 215
        T w1 = 0, w2 = 0, w3 = 0, w4 = 0;
        int x_low = -1, x_high = -1, y_low = -1, y_high = -1;
J
jerrywgz 已提交
216 217
        BilinearInterpolateGradient(height, width, y, x, &w1, &w2, &w3, &w4,
                                    &x_low, &x_high, &y_low, &y_high);
J
jerrywgz 已提交
218 219 220 221 222 223 224 225 226 227 228 229
        T diff1 = out_grad_this_bin * w1 / count;
        T diff2 = out_grad_this_bin * w2 / count;
        T diff3 = out_grad_this_bin * w3 / count;
        T diff4 = out_grad_this_bin * w4 / count;
        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_low,
                                  diff1);
          platform::CudaAtomicAdd(offset_input_grad + y_low * width + x_high,
                                  diff2);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_low,
                                  diff3);
          platform::CudaAtomicAdd(offset_input_grad + y_high * width + x_high,
230
                                  diff4);
J
jerrywgz 已提交
231 232 233 234 235 236 237 238 239 240
        }
      }
    }
  }
}

template <typename Place, typename T>
class GPUROIAlignOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
241
    auto* in = ctx.Input<Tensor>("X");
J
jerrywgz 已提交
242 243 244 245 246 247 248
    auto* rois = ctx.Input<LoDTensor>("ROIs");
    auto* out = ctx.Output<Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
249
    auto aligned = ctx.Attr<bool>("aligned");
J
jerrywgz 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];

    int rois_num = rois->dims()[0];

    if (rois_num == 0) return;

    int output_size = out->numel();
    int blocks = NumBlocks(output_size);
    int threads = kNumCUDAThreads;

    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
267 268
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
269
    auto& dev_ctx = ctx.cuda_device_context();
270
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
271 272 273
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      int rois_batch_size = rois_num_t->numel();
F
FDInSky 已提交
274
      PADDLE_ENFORCE_EQ(
275
          rois_batch_size, batch_size,
F
FDInSky 已提交
276 277 278 279 280 281
          platform::errors::InvalidArgument(
              "The rois_batch_size and imgs "
              "batch_size must be the same. But received rois_batch_size = %d, "
              "batch_size = %d",
              rois_batch_size, batch_size));

282 283 284 285 286 287
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), gplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (int i = start; i < start + rois_num_list[n]; ++i) {
F
FDInSky 已提交
288 289
          roi_batch_id_data[i] = n;
        }
290
        start += rois_num_list[n];
F
FDInSky 已提交
291 292 293 294 295
      }
    } else {
      auto lod = rois->lod();
      PADDLE_ENFORCE_EQ(
          lod.empty(), false,
296 297
          platform::errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
                                            "not contain LoD information."));
F
FDInSky 已提交
298 299 300 301 302
      auto rois_lod = lod.back();
      int rois_batch_size = rois_lod.size() - 1;
      PADDLE_ENFORCE_EQ(
          rois_batch_size, batch_size,
          platform::errors::InvalidArgument(
303 304 305
              "The batch size of rois and batch size "
              "of images must be the same. But received rois batch size = %d, "
              "and images batch size = %d",
F
FDInSky 已提交
306 307
              rois_batch_size, batch_size));
      int rois_num_with_lod = rois_lod[rois_batch_size];
308 309 310 311 312 313 314 315
      PADDLE_ENFORCE_EQ(
          rois_num, rois_num_with_lod,
          platform::errors::InvalidArgument(
              "The actual number of rois and the number of rois "
              "provided from Input(RoIsLoD) in RoIAlign must be the same."
              " But received actual number of rois is %d, and the number "
              "of rois from RoIsLoD is %d",
              rois_num, rois_num_with_lod));
F
FDInSky 已提交
316 317 318 319
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
320 321
      }
    }
322
    int bytes = roi_batch_id_list.numel() * sizeof(int);
323
    auto roi_ptr = memory::Alloc(dev_ctx, bytes);
324 325 326 327
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
    GPUROIAlignForward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
328
        output_size, in->data<T>(), rois->data<T>(), spatial_scale, channels,
329
        height, width, pooled_height, pooled_width, sampling_ratio, roi_id_data,
330
        out->mutable_data<T>(ctx.GetPlace()), aligned);
J
jerrywgz 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  }
};

template <typename Place, typename T>
class GPUROIAlignGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<Tensor>("X");
    auto* rois = ctx.Input<LoDTensor>("ROIs");

    auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
348
    auto aligned = ctx.Attr<bool>("aligned");
J
jerrywgz 已提交
349 350 351 352 353 354

    int rois_num = rois->dims()[0];
    int channels = in->dims()[1];
    int height = in->dims()[2];
    int width = in->dims()[3];

J
jerrywgz 已提交
355 356 357 358 359
    if (!in_grad) {
      return;
    }
    Tensor roi_batch_id_list;
    roi_batch_id_list.Resize({rois_num});
360 361
    auto cplace = platform::CPUPlace();
    int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
F
FDInSky 已提交
362 363

    auto& dev_ctx = ctx.cuda_device_context();
364
    auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
365 366 367 368 369 370 371 372 373
    if (ctx.HasInput("RoisNum")) {
      auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
      int rois_batch_size = rois_num_t->numel();
      std::vector<int> rois_num_list(rois_batch_size);
      memory::Copy(cplace, rois_num_list.data(), gplace,
                   rois_num_t->data<int>(), sizeof(int) * rois_batch_size, 0);
      int start = 0;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = start; i < start + rois_num_list[n]; ++i) {
F
FDInSky 已提交
374 375
          roi_batch_id_data[i] = n;
        }
376
        start += rois_num_list[n];
F
FDInSky 已提交
377 378 379 380 381 382 383 384
      }
    } else {
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          roi_batch_id_data[i] = n;
        }
J
jerrywgz 已提交
385 386
      }
    }
387 388
    auto roi_ptr =
        memory::Alloc(dev_ctx, roi_batch_id_list.numel() * sizeof(int));
389 390 391 392
    int* roi_id_data = reinterpret_cast<int*>(roi_ptr->ptr());
    int bytes = roi_batch_id_list.numel() * sizeof(int);
    memory::Copy(gplace, roi_id_data, cplace, roi_batch_id_data, bytes,
                 dev_ctx.stream());
J
jerrywgz 已提交
393 394
    in_grad->mutable_data<T>(ctx.GetPlace());
    math::SetConstant<Place, T> set_zero;
395
    set_zero(dev_ctx, in_grad, static_cast<T>(0));
J
jerrywgz 已提交
396 397 398 399 400 401

    int output_grad_size = out_grad->numel();
    int blocks = NumBlocks(output_grad_size);
    int threads = kNumCUDAThreads;

    if (output_grad_size > 0) {
402
      GPUROIAlignBackward<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
J
jerrywgz 已提交
403 404
          output_grad_size, rois->data<T>(), out_grad->data<T>(), rois_num,
          spatial_scale, channels, height, width, pooled_height, pooled_width,
405 406
          sampling_ratio, roi_id_data, in_grad->mutable_data<T>(ctx.GetPlace()),
          aligned);
J
jerrywgz 已提交
407
    }
J
jerrywgz 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    roi_align,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
    roi_align_grad,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::GPUROIAlignGradOpKernel<paddle::platform::CUDADeviceContext, double>);