input.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...static import Variable
16
from ...fluid.layer_helper import LayerHelper
17
from ...fluid.data_feeder import check_variable_and_dtype
18
from paddle import _C_ops, _legacy_C_ops
J
Jiabin Yang 已提交
19
from ...fluid.framework import _in_legacy_dygraph, in_dygraph_mode
20

21 22
__all__ = []

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

def one_hot(x, num_classes, name=None):
    """

    The operator converts each id in the input 'x' to an one-hot vector with a
    num_classes length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor is generated by appending num_classes dimension
    behind the last dimension of the 'x' shape.

    .. code-block:: text

        Example 1:

        input:
            x.shape = [4]
            x.data = [1, 1, 3, 0]
            num_classes = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2:

        input:
            x.shape = [4]
            x.data = [1, 1, 5, 0]
            num_classes = 4

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than num_classes,
            so it throws an exception.


    Args:
        x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
            which contains at least one dimension. The data type is int32 or int64.
        num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
            is word id, num_classes is generally the dictionary size.

    Returns:
        Tensor: The one-hot representations of 'x'. A Tensor with type float32.

    Examples:
        .. code-block:: python

74
            import paddle
75
            # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
Y
yukavio 已提交
76
            label = paddle.to_tensor([1, 1, 3, 0], dtype='int64')
77
            # label.shape = [4]
Y
yukavio 已提交
78
            one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
79
            # one_hot_label.shape = [4, 4]
Y
yukavio 已提交
80 81 82 83
            # one_hot_label = [[0., 1., 0., 0.],
            #                  [0., 1., 0., 0.],
            #                  [0., 0., 0., 1.],
            #                  [1., 0., 0., 0.]]
T
tangwei12 已提交
84

85 86
    """

J
Jiabin Yang 已提交
87
    if in_dygraph_mode():
88
        return _C_ops.one_hot(x, num_classes)
89
    else:
J
Jiabin Yang 已提交
90
        if _in_legacy_dygraph():
91 92
            return _legacy_C_ops.one_hot_v2(x, 'depth', num_classes,
                                            'allow_out_of_range', False)
93
        else:
J
Jiabin Yang 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107
            check_variable_and_dtype(x, 'input', ['int32', 'int64'],
                                     'one_hot_v2')
            helper = LayerHelper("one_hot_v2", **locals())

            one_hot_out = helper.create_variable_for_type_inference(
                dtype='float32')
            if not isinstance(num_classes, Variable):
                # user attribute
                inputs = {'X': x}
                attrs = {'depth': num_classes, 'allow_out_of_range': False}
            else:
                num_classes.stop_gradient = True
                inputs = {'X': x, 'depth_tensor': num_classes}
                attrs = {'allow_out_of_range': False}
108 109 110 111 112
            helper.append_op(type="one_hot_v2",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={'Out': one_hot_out},
                             stop_gradient=True)
J
Jiabin Yang 已提交
113
            return one_hot_out
T
tangwei12 已提交
114 115 116


def embedding(x, weight, padding_idx=None, sparse=False, name=None):
117
    r"""
118
    Used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
119 120 121

    The shape of output Tensor is generated by appending the last dimension of the input Tensor shape
    with embedding size.
T
tangwei12 已提交
122

123 124 125
    Note:
        The id in :attr:`x` must satisfy :math:`0 =< id < weight.shape[0]` ,
        otherwise the program will throw an exception and exit.
T
tangwei12 已提交
126 127

    .. code-block:: text
128

T
tangwei12 已提交
129
            x is a Tensor.
T
tangwei12 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143
                padding_idx = -1
                x.data = [[1, 3], [2, 4], [4, 127]]
                x.shape = [3, 2]
                weight.shape = [128, 16]
            output is a Tensor:
                out.shape = [3, 2, 16]
                out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                            [0.345421456, 0.524563927, ..., 0.144534654]],
                            [[0.345249859, 0.124939536, ..., 0.194353745],
                            [0.945345345, 0.435394634, ..., 0.435345365]],
                            [[0.945345345, 0.435394634, ..., 0.435345365],
                            [0.0,         0.0,         ..., 0.0        ]]]  # padding data

            The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
T
tangwei12 已提交
144
            It will pad all-zero data when id is 127.
T
tangwei12 已提交
145 146 147 148 149 150

    Args:
        x(Tensor): A Tensor with type int32/int64, which contains the id information. The value of the input id should
            satisfy :math:`0<= id < weight.shape[0]` .
        weight (Tensor): The weight. A Tensor with shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
151
        sparse(bool, optional): The flag indicating whether to use sparse update. This parameter only
T
tangwei12 已提交
152 153
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizers does not support sparse update,
T
tangwei12 已提交
154
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
155
            In these cases, sparse must be False. Default: False.
156
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-weight.shape[0], weight.shape[0]).
T
tangwei12 已提交
157
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
T
tangwei12 已提交
158
            to :math:`weight.shape[0] + padding\_idx` . It will output all-zero padding data whenever lookup
T
tangwei12 已提交
159 160
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
161
        name(str|None, optional): For detailed information, please refer
T
tangwei12 已提交
162 163 164 165
           to :ref:`api_guide_Name`. Usually name is no need to set and
           None by default.

    Returns:
T
tangwei12 已提交
166
        Tensor: Embedding Tensor  mapped by x. The data type is the same as :attr:`weight`.
T
tangwei12 已提交
167 168 169 170

    Examples:

        .. code-block:: python
171

T
tangwei12 已提交
172 173 174
            import paddle
            import paddle.nn as nn

175 176
            x0 = paddle.arange(3, 6).reshape((3, 1)).astype(paddle.int64)
            w0 = paddle.full(shape=(10, 3), fill_value=2).astype(paddle.float32)
T
tangwei12 已提交
177

T
tangwei12 已提交
178 179 180
            # x.data = [[3], [4], [5]]
            # x.shape = [3, 1]
            x = paddle.to_tensor(x0, stop_gradient=False)
T
tangwei12 已提交
181

T
tangwei12 已提交
182 183 184
            # w.data = [[2. 2. 2.] ... [2. 2. 2.]]
            # w.shape = [10, 3]
            w = paddle.to_tensor(w0, stop_gradient=False)
T
tangwei12 已提交
185

T
tangwei12 已提交
186 187 188 189
            # emb.data = [[[2., 2., 2.]], [[2., 2., 2.]], [[2., 2., 2.]]]
            # emb.shape = [3, 1, 3]
            emb = nn.functional.embedding(
                    x=x, weight=w, sparse=True, name="embedding")
T
tangwei12 已提交
190 191

    """
192 193 194 195 196 197 198
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        weight.shape[0] + padding_idx)

    if padding_idx >= weight.shape[0] or padding_idx < -weight.shape[0]:
        raise ValueError("padding_idx must be within [-{}, {})".format(
            weight.shape[0], weight.shape[0]))

Z
zyfncg 已提交
199
    if in_dygraph_mode():
200
        return _C_ops.embedding(x, weight, padding_idx, sparse)
Z
zyfncg 已提交
201
    elif _in_legacy_dygraph():
202 203 204 205
        return _legacy_C_ops.lookup_table_v2(weight, x, 'is_sparse', sparse,
                                             'is_distributed', False,
                                             'remote_prefetch', False,
                                             'padding_idx', padding_idx)
T
tangwei12 已提交
206 207
    else:
        helper = LayerHelper('embedding', **locals())
208
        dtype = helper.input_dtype(input_param_name='weight')
T
tangwei12 已提交
209

210 211 212
        check_variable_and_dtype(x, 'input',
                                 ['uint8', 'int8', 'int16', 'int32', 'int64'],
                                 'embedding')
T
tangwei12 已提交
213 214 215 216 217

        is_distributed = False
        remote_prefetch = sparse and (not is_distributed)

        tmp = helper.create_variable_for_type_inference(dtype)
T
tangwei12 已提交
218

219 220 221 222 223 224 225 226 227 228 229 230
        helper.append_op(type='lookup_table_v2',
                         inputs={
                             'Ids': x,
                             'W': weight
                         },
                         outputs={'Out': tmp},
                         attrs={
                             'is_sparse': sparse,
                             'is_distributed': is_distributed,
                             'remote_prefetch': remote_prefetch,
                             'padding_idx': padding_idx
                         })
T
tangwei12 已提交
231
        return tmp