test_var_base.py 70.2 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16
import numpy as np
17
import copy
18

19
import paddle
L
Leo Chen 已提交
20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
J
Jiabin Yang 已提交
22
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
L
Leo Chen 已提交
23 24 25


class TestVarBase(unittest.TestCase):
26

L
Leo Chen 已提交
27 28 29 30 31
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

32
    def func_test_to_tensor(self):
33

34
        def check_with_place(place):
35
            with fluid.dygraph.guard():
36
                paddle.set_default_dtype('float32')
37
                # set_default_dtype should not take effect on int
38
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
39
                np.testing.assert_array_equal(x.numpy(), [1])
40 41
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

42 43 44
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

45
                # set_default_dtype should not take effect on numpy
46 47 48
                x = paddle.to_tensor(np.array([1.2]).astype('float16'),
                                     place=place,
                                     stop_gradient=False)
49 50
                np.testing.assert_array_equal(x.numpy(),
                                              np.array([1.2], 'float16'))
51 52
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

53 54 55 56
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

57
                # set_default_dtype take effect on float
58
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
59 60
                np.testing.assert_array_equal(x.numpy(),
                                              np.array([1.2]).astype('float32'))
61
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
62
                clone_x = x.clone()
63 64
                np.testing.assert_array_equal(clone_x.numpy(),
                                              np.array([1.2]).astype('float32'))
Z
Zhou Wei 已提交
65 66 67
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
68 69
                np.testing.assert_array_equal(x.grad.numpy(),
                                              np.array([2.4]).astype('float32'))
70
                y = x.cpu()
71
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
72 73
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
74
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
75
                    y = x.cuda()
76
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
77
                    y = x.cuda(None)
78
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
79
                    y = x.cuda(device_id=0)
80
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
81
                    y = x.cuda(blocking=False)
82
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
83
                    y = x.cuda(blocking=True)
84
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
85 86
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
87

88 89 90 91 92
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

93
                # set_default_dtype take effect on complex
94
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
95
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
96
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
97 98 99

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
100
                np.testing.assert_array_equal(x.numpy(), [1.2])
101 102 103
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
104
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
105
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
106

107 108 109 110
                x = paddle.to_tensor(1,
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
111
                np.testing.assert_array_equal(x.numpy(), [1.0])
112 113 114 115 116
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

117 118 119 120 121 122 123 124
                x = paddle.to_tensor((1, 2),
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
                x = paddle.to_tensor([1, 2],
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
125
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
126 127 128 129 130 131
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

132 133 134 135
                x = paddle.to_tensor(self.array,
                                     dtype='float32',
                                     place=place,
                                     stop_gradient=False)
136
                np.testing.assert_array_equal(x.numpy(), self.array)
137 138 139 140 141 142 143
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
144
                np.testing.assert_array_equal(y.numpy(), self.array)
145 146 147 148 149
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
150
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
151

152 153 154
                x = paddle.to_tensor([1 + 2j, 1 - 2j],
                                     dtype='complex64',
                                     place=place)
155
                y = paddle.to_tensor(x)
156
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
157
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
158 159
                self.assertEqual(y.shape, [2])

160 161 162 163 164
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
165
                np.testing.assert_array_equal(x_array, x.numpy())
166 167 168 169 170 171 172 173 174

                x = paddle.to_tensor(1.0)
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
175 176
                np.testing.assert_array_equal(x.item(1, 0, 1),
                                              x.numpy().item(1, 0, 1))
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
209
                self.assertTrue(isinstance(x.item(), int))
210 211 212 213 214 215 216 217 218

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

219 220 221 222 223
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
224
                np.testing.assert_array_equal(x.numpy(), expected_result)
225

226 227 228 229 230 231
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
                lod_tensor = paddle.fluid.core.LoDTensor()
                place = paddle.fluid.framework._current_expected_place()
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
232
                np.testing.assert_array_equal(x.numpy(), numpy_array)
233 234 235 236 237 238 239 240
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
                tensor_from_dlpack = paddle.fluid.core.from_dlpack(dlpack)
                x = paddle.to_tensor(tensor_from_dlpack)
241
                np.testing.assert_array_equal(x.numpy(), numpy_array)
242 243
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

244 245 246 247 248 249 250 251
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
252 253 254 255 256 257 258 259 260 261 262
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

263 264
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
265
        if core.is_compiled_with_cuda():
266 267 268 269
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
270
        if core.is_compiled_with_npu():
271 272
            check_with_place(core.NPUPlace(0))
            check_with_place("npu:0")
273

274 275 276 277 278 279
    def test_to_tensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor()
        self.func_test_to_tensor()

    def func_test_to_tensor_not_change_input_stop_gradient(self):
280 281 282 283 284 285 286
        with paddle.fluid.dygraph.guard(core.CPUPlace()):
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

287 288 289 290 291 292
    def test_to_tensor_not_change_input_stop_gradient(self):
        with _test_eager_guard():
            self.func_test_to_tensor_not_change_input_stop_gradient()
        self.func_test_to_tensor_not_change_input_stop_gradient()

    def func_test_to_tensor_change_place(self):
293 294 295 296 297
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
298
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
299 300 301 302

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
303
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
304 305 306 307

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
308
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
309

310 311 312 313 314 315
    def test_to_tensor_change_place(self):
        with _test_eager_guard():
            self.func_test_to_tensor_change_place()
        self.func_test_to_tensor_change_place()

    def func_test_to_tensor_with_lodtensor(self):
316 317 318 319 320 321
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
322
                np.testing.assert_array_equal(a_np, a.numpy())
323 324 325 326

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
327
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
328
                np.testing.assert_array_equal(a_np, a.numpy())
329
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
330

331 332 333 334 335 336
    def test_to_tensor_with_lodtensor(self):
        with _test_eager_guard():
            self.func_test_to_tensor_with_lodtensor()
        self.func_test_to_tensor_with_lodtensor()

    def func_test_to_variable(self):
L
Leo Chen 已提交
337 338
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
339
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
340 341 342 343 344 345 346
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
347 348 349 350 351 352 353
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
354

355 356 357 358 359 360
    def test_to_variable(self):
        with _test_eager_guard():
            self.func_test_to_variable()
        self.func_test_to_variable()

    def func_test_list_to_variable(self):
361 362 363
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
364
            np.testing.assert_array_equal(var.numpy(), array)
365 366 367 368
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

369 370 371 372 373 374
    def test_list_to_variable(self):
        with _test_eager_guard():
            self.func_test_list_to_variable()
        self.func_test_list_to_variable()

    def func_test_tuple_to_variable(self):
375 376 377
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
378
            np.testing.assert_array_equal(var.numpy(), array)
379 380 381 382
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

383 384 385 386 387 388
    def test_tuple_to_variable(self):
        with _test_eager_guard():
            self.func_test_tuple_to_variable()
        self.func_test_tuple_to_variable()

    def func_test_tensor_to_variable(self):
389 390
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
391
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
392
            var = fluid.dygraph.to_variable(t)
393
            np.testing.assert_array_equal(t, var.numpy())
394

395 396 397 398 399 400
    def test_tensor_to_variable(self):
        with _test_eager_guard():
            self.func_test_tensor_to_variable()
        self.func_test_tensor_to_variable()

    def func_test_leaf_tensor(self):
401 402 403 404 405 406
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

407 408
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]),
                                 stop_gradient=False)
409 410 411 412 413
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
414 415 416
            input = paddle.to_tensor(np.random.uniform(
                -1, 1, size=[10, 10]).astype('float32'),
                                     stop_gradient=False)
417 418 419 420 421 422 423
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

424 425 426 427 428 429
    def test_leaf_tensor(self):
        with _test_eager_guard():
            self.func_test_leaf_tensor()
        self.func_test_leaf_tensor()

    def func_test_detach(self):
Z
Zhou Wei 已提交
430 431 432 433 434
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

Z
zhulei 已提交
435 436
            cmp_float = np.allclose if core.is_compiled_with_rocm(
            ) else np.array_equal
Z
Zhou Wei 已提交
437
            detach_x[:] = 10.0
Z
zhulei 已提交
438
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
439 440 441

            y = x**2
            y.backward()
Z
zhulei 已提交
442
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
Z
Zhou Wei 已提交
443 444 445 446 447
            self.assertEqual(detach_x.grad, None)

            detach_x.stop_gradient = False  # Set stop_gradient to be False, supported auto-grad
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
448 449
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
450

451 452 453 454 455
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
456
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
457 458 459 460
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
461

462 463 464 465 466 467
    def test_detach(self):
        with _test_eager_guard():
            self.func_test_detach()
        self.func_test_detach()

    def func_test_write_property(self):
L
Leo Chen 已提交
468 469 470
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

471
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
472 473 474 475 476 477 478 479 480 481 482
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

483 484 485 486 487 488
    def test_write_property(self):
        with _test_eager_guard():
            self.func_test_write_property()
        self.func_test_write_property()

    def func_test_deep_copy(self):
489
        with fluid.dygraph.guard():
490 491 492 493
            if _in_legacy_dygraph():
                empty_var = core.VarBase()
            else:
                empty_var = core.eager.Tensor()
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            empty_var_copy = copy.deepcopy(empty_var)
            self.assertEqual(empty_var.stop_gradient,
                             empty_var_copy.stop_gradient)
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

            x = paddle.to_tensor([2.], stop_gradient=False)
            y = paddle.to_tensor([3.], stop_gradient=False)
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
512 513
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
514 515

            self.assertNotEqual(id(x), id(x_copy))
516
            np.testing.assert_array_equal(x.numpy(), [2.0])
517

518 519 520
            with self.assertRaises(ValueError):
                x_copy[:] = 5.

521 522 523 524 525 526 527 528 529
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
530 531 532 533 534 535 536 537 538
            if _in_legacy_dygraph():
                x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
                                 "selected_rows",
                                 core.VarDesc.VarType.SELECTED_ROWS, True)
            else:
                x = core.eager.Tensor(core.VarDesc.VarType.FP32, [3, 100],
                                      "selected_rows",
                                      core.VarDesc.VarType.SELECTED_ROWS, True)

539
            selected_rows = x.value().get_selected_rows()
540 541
            selected_rows.get_tensor().set(np.random.rand(3, 100),
                                           core.CPUPlace())
542 543 544 545 546 547 548 549 550 551 552 553 554
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
            self.assertEqual(copy_selected_rows.height(),
                             selected_rows.height())
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
555 556 557
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
                np.array(selected_rows.get_tensor()))
558

559 560 561 562 563
    def test_deep_copy(self):
        with _test_eager_guard():
            self.func_test_deep_copy()
        self.func_test_deep_copy()

L
Leo Chen 已提交
564
    # test some patched methods
565
    def func_test_set_value(self):
L
Leo Chen 已提交
566 567 568 569 570 571 572
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
573
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
574

575 576 577 578 579 580
    def test_set_value(self):
        with _test_eager_guard():
            self.func_test_set_value()
        self.func_test_set_value()

    def func_test_to_string(self):
L
Leo Chen 已提交
581 582
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
583
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
584

585 586 587 588 589 590
    def test_to_string(self):
        with _test_eager_guard():
            self.func_test_to_string()
        self.func_test_to_string()

    def func_test_element_size(self):
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

625 626 627 628 629 630
    def test_element_size(self):
        with _test_eager_guard():
            self.func_test_element_size()
        self.func_test_element_size()

    def func_test_backward(self):
L
Leo Chen 已提交
631 632 633 634 635 636 637 638
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

639 640 641 642 643 644
    def test_backward(self):
        with _test_eager_guard():
            self.func_test_backward()
        self.func_test_backward()

    def func_test_gradient(self):
L
Leo Chen 已提交
645 646 647 648 649 650 651 652
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

653 654 655 656 657 658
    def test_gradient(self):
        with _test_eager_guard():
            self.func_test_gradient()
        self.func_test_gradient()

    def func_test_block(self):
L
Leo Chen 已提交
659 660 661 662 663
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

664 665 666 667 668
    def test_block(self):
        with _test_eager_guard():
            self.func_test_block()
        self.func_test_block()

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

694 695 696 697
        tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                 [[19, 20, 21], [22, 23, 24],
                                  [25, 26, 27]]]).astype('float32')
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
715
        var16 = var[-4:4]
716 717
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
718 719 720

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
721
            var11, var12, var13, var14, var15, var16, var17, var18
722 723 724
        ]
        local_out = [var.numpy() for var in vars]

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
            local_out[6],
            tensor_array.reshape((3, -1, 3))[:, :, -1])
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
        np.testing.assert_array_equal(local_out[10],
                                      tensor_array[::-1, :1, :-1])
        np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                  -1:])
        np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                  2:, ::-1])
        np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                  -2:-1])
        np.testing.assert_array_equal(local_out[14], tensor_array[1:-1,
                                                                  0:2, ::-1])
        np.testing.assert_array_equal(local_out[15],
                                      tensor_array[::-1, ::-1, ::-1])
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
751

752
    def _test_slice_for_tensor_attr(self):
753 754 755 756
        tensor_array = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                                 [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                                 [[19, 20, 21], [22, 23, 24],
                                  [25, 26, 27]]]).astype('float32')
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

        var = paddle.to_tensor(tensor_array)

        one = paddle.ones(shape=[1], dtype="int32")
        two = paddle.full(shape=[1], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[1], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[1], fill_value=4, dtype="int32")

        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
        var_reshape = fluid.layers.reshape(var, [3, negative_one, 3])
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
            var11, var12, var13, var14, var15, var16
        ]
        local_out = [var.numpy() for var in vars]

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
            local_out[6],
            tensor_array.reshape((3, -1, 3))[:, :, -1])
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
        np.testing.assert_array_equal(local_out[10],
                                      tensor_array[::-1, :1, :-1])
        np.testing.assert_array_equal(local_out[11], tensor_array[:-1, ::-1,
                                                                  -1:])
        np.testing.assert_array_equal(local_out[12], tensor_array[1:2,
                                                                  2:, ::-1])
        np.testing.assert_array_equal(local_out[13], tensor_array[2:10, 2:,
                                                                  -2:-1])
        np.testing.assert_array_equal(local_out[14], tensor_array[1:-1,
                                                                  0:2, ::-1])
        np.testing.assert_array_equal(local_out[15],
                                      tensor_array[::-1, ::-1, ::-1])
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
814

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

836 837 838 839 840 841 842 843 844
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
845 846 847 848 849 850 851

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

852 853
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
854 855
        np.testing.assert_array_equal(var_one_dim[..., 0].numpy(),
                                      np.array([1]))
856

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
872
            var_tensor[None, None, 0, ..., None].numpy(),
873
            var_tensor[..., None, :, None].numpy(),
874 875 876
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

877 878 879 880 881 882 883 884 885 886 887 888
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
        np.testing.assert_array_equal(var[9], np_value[None, None, 0, ...,
                                                       None])
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
889

890 891
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
892
        # self.assertTrue(
893
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
894

Z
zyfncg 已提交
895 896 897 898 899
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [[True, True, True, True], [True, False, True, True],
900 901
                 [True, False, False, True], [False, 0, 1, True, True],
                 [False, False, False, False]]
Z
zyfncg 已提交
902 903 904 905
        index2d = np.array([[True, True], [False, False], [True, False],
                            [True, True]])
        tensor_index = paddle.to_tensor(index2d)
        var = [
906 907
            var_tensor[index[0]].numpy(), var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(), var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
908 909
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
910
            var_tensor[paddle.to_tensor(index[4])].numpy()
Z
zyfncg 已提交
911
        ]
912 913 914 915 916 917 918 919 920 921 922
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
        np.testing.assert_array_equal(var_tensor[var_tensor > 0.67],
                                      np_value[np_value > 0.67])
        np.testing.assert_array_equal(var_tensor[var_tensor < 0.55],
                                      np_value[np_value < 0.55])
Z
zyfncg 已提交
923 924 925 926 927 928 929 930 931 932

        with self.assertRaises(ValueError):
            var_tensor[[False, False, False, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False]]
        with self.assertRaises(ValueError):
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

933 934 935 936 937 938
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
939 940 941
        var = [
            var_tensor[tensor_index].numpy(),
        ]
942
        np.testing.assert_array_equal(var[0], np_value[index])
943

H
hong 已提交
944 945 946 947 948
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
949
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
950

951 952 953
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
954 955 956 957 958 959 960 961 962
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
            t[np.longlong(0):np.longlong(4):np.longlong(2)].numpy(),
            array[0:4:2])
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
            t[np.int32(1):np.int32(4):np.int32(2)].numpy(), array[1:4:2])
        np.testing.assert_array_equal(
            t[np.int16(0):np.int16(4):np.int16(2)].numpy(), array[0:4:2])
963 964 965 966 967 968 969

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
970 971
        np.testing.assert_array_equal(x[idx].numpy(), array[py_idx])
        np.testing.assert_array_equal(x[py_idx].numpy(), array[py_idx])
972 973 974
        # case2:
        tensor_x = paddle.to_tensor(
            np.zeros(12).reshape(2, 6).astype(np.float32))
975 976
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
977 978 979 980
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
        exp = np.array([[0., 0., 42., 42., 42., 0.],
                        [0., 0., 42., 42., 42., 0.]])
981
        np.testing.assert_array_equal(res, exp)
982

W
WeiXin 已提交
983 984 985
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
986
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
987

W
wanghuancoder 已提交
988
    def func_test_slice(self):
L
Leo Chen 已提交
989
        with fluid.dygraph.guard():
990
            self._test_slice()
991
            self._test_slice_for_tensor_attr()
H
hong 已提交
992
            self._test_for_var()
993
            self._test_for_getitem_ellipsis_index()
994
            self._test_none_index()
Z
zyfncg 已提交
995
            self._test_bool_index()
996
            self._test_scalar_bool_index()
997 998
            self._test_numpy_index()
            self._test_list_index()
999

L
Leo Chen 已提交
1000
            var = fluid.dygraph.to_variable(self.array)
1001 1002
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1003

H
hong 已提交
1004 1005 1006
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1007 1008 1009
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1010 1011 1012 1013
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

W
wanghuancoder 已提交
1014 1015 1016 1017 1018
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1019
    def func_test_var_base_to_np(self):
L
Leo Chen 已提交
1020 1021
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1022 1023
            np.testing.assert_array_equal(var.numpy(),
                                          fluid.framework._var_base_to_np(var))
L
Leo Chen 已提交
1024

1025 1026 1027 1028 1029 1030
    def test_var_base_to_np(self):
        with _test_eager_guard():
            self.func_test_var_base_to_np()
        self.func_test_var_base_to_np()

    def func_test_var_base_as_np(self):
1031 1032
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
1033 1034 1035
            np.testing.assert_array_equal(var.numpy(), np.array(var))
            np.testing.assert_array_equal(var.numpy(),
                                          np.array(var, dtype=np.float32))
1036

1037 1038 1039 1040 1041 1042
    def test_var_base_as_np(self):
        with _test_eager_guard():
            self.func_test_var_base_as_np()
        self.func_test_var_base_as_np()

    def func_test_if(self):
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

1061 1062 1063 1064 1065 1066
    def test_if(self):
        with _test_eager_guard():
            self.func_test_if()
        self.func_test_if()

    def func_test_to_static_var(self):
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

1089 1090 1091 1092 1093
    def test_to_static_var(self):
        with _test_eager_guard():
            self.func_test_to_static_var()
        self.func_test_to_static_var()

1094 1095 1096 1097 1098 1099
    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1100 1101
                    self.assertEqual(getattr(var_base, attr),
                                     getattr(static_var, attr))
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1117
    def func_test_tensor_str(self):
Z
Zhou Wei 已提交
1118
        paddle.enable_static()
1119
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1120
        paddle.seed(10)
1121 1122 1123 1124
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1125
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1136 1137 1138 1139 1140 1141
    def test_tensor_str(self):
        with _test_eager_guard():
            self.func_test_tensor_str()
        self.func_test_tensor_str()

    def func_test_tensor_str2(self):
1142 1143 1144 1145
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1146
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1147 1148 1149 1150 1151
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1152 1153 1154 1155 1156 1157
    def test_tensor_str2(self):
        with _test_eager_guard():
            self.func_test_tensor_str2()
        self.func_test_tensor_str2()

    def func_test_tensor_str3(self):
1158 1159 1160 1161
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1162
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1163 1164 1165 1166 1167
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1168 1169 1170 1171 1172 1173
    def test_tensor_str3(self):
        with _test_eager_guard():
            self.func_test_tensor_str3()
        self.func_test_tensor_str3()

    def func_test_tensor_str_scaler(self):
1174 1175 1176 1177
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1178
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1179 1180 1181 1182
       False)'''

        self.assertEqual(a_str, expected)

1183 1184 1185 1186 1187 1188
    def test_tensor_str_scaler(self):
        with _test_eager_guard():
            self.func_test_tensor_str_scaler()
        self.func_test_tensor_str_scaler()

    def func_test_tensor_str_shape_with_zero(self):
1189 1190 1191 1192 1193
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
        y = paddle.fluid.layers.where(x == 0)
        a_str = str(y)

1194
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1195 1196 1197 1198
       [])'''

        self.assertEqual(a_str, expected)

1199 1200 1201 1202 1203 1204
    def test_tensor_str_shape_with_zero(self):
        with _test_eager_guard():
            self.func_test_tensor_str_shape_with_zero()
        self.func_test_tensor_str_shape_with_zero()

    def func_test_tensor_str_linewidth(self):
1205 1206 1207
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1208 1209 1210 1211
        paddle.set_printoptions(precision=4,
                                threshold=1000,
                                edgeitems=3,
                                linewidth=80)
1212 1213
        a_str = str(x)

1214
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1233 1234 1235 1236 1237 1238
    def test_tensor_str_linewidth(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth()
        self.func_test_tensor_str_linewidth()

    def func_test_tensor_str_linewidth2(self):
1239 1240 1241 1242 1243 1244
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1245
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1260 1261 1262 1263 1264 1265
    def test_tensor_str_linewidth2(self):
        with _test_eager_guard():
            self.func_test_tensor_str_linewidth2()
        self.func_test_tensor_str_linewidth2()

    def func_tensor_str_bf16(self):
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1278 1279 1280 1281 1282
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

1283 1284 1285 1286 1287 1288
    def test_tensor_str_bf16(self):
        with _test_eager_guard():
            self.func_tensor_str_bf16()
        self.func_tensor_str_bf16()

    def func_test_print_tensor_dtype(self):
L
Leo Chen 已提交
1289 1290 1291 1292 1293 1294 1295
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1296 1297 1298 1299 1300

    def test_print_tensor_dtype(self):
        with _test_eager_guard():
            self.func_test_print_tensor_dtype()
        self.func_test_print_tensor_dtype()
L
Leo Chen 已提交
1301

L
Leo Chen 已提交
1302

1303
class TestVarBaseSetitem(unittest.TestCase):
1304

1305
    def func_setUp(self):
1306 1307 1308
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1309 1310
        self.tensor_value = paddle.to_tensor(self.np_value)

1311 1312 1313
    def set_dtype(self):
        self.dtype = "int32"

1314
    def _test(self, value):
J
Jiabin Yang 已提交
1315
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1316
            self.assertEqual(self.tensor_x.inplace_version, 0)
1317

1318
        id_origin = id(self.tensor_x)
1319
        self.tensor_x[0] = value
J
Jiabin Yang 已提交
1320
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1321
            self.assertEqual(self.tensor_x.inplace_version, 1)
1322

1323
        if isinstance(value, (int, float)):
1324
            result = np.zeros((2, 3)).astype(self.dtype) + value
1325 1326 1327 1328

        else:
            result = self.np_value

1329
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1330 1331 1332
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
J
Jiabin Yang 已提交
1333
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1334
            self.assertEqual(self.tensor_x.inplace_version, 2)
1335
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1336 1337 1338
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
J
Jiabin Yang 已提交
1339
        if _in_legacy_dygraph():
W
wanghuancoder 已提交
1340
            self.assertEqual(self.tensor_x.inplace_version, 3)
1341
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1342 1343
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1344
    def func_test_value_tensor(self):
1345 1346
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1347 1348
    def test_value_tensor(self):
        with _test_eager_guard():
1349
            self.func_setUp()
W
wanghuancoder 已提交
1350
            self.func_test_value_tensor()
1351
        self.func_setUp()
W
wanghuancoder 已提交
1352 1353 1354
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1355 1356
        self._test(self.np_value)

W
wanghuancoder 已提交
1357 1358
    def test_value_numpy(self):
        with _test_eager_guard():
1359
            self.func_setUp()
W
wanghuancoder 已提交
1360
            self.func_test_value_numpy()
1361
        self.func_setUp()
W
wanghuancoder 已提交
1362 1363 1364
        self.func_test_value_numpy()

    def func_test_value_int(self):
1365 1366
        self._test(10)

W
wanghuancoder 已提交
1367 1368
    def test_value_int(self):
        with _test_eager_guard():
1369
            self.func_setUp()
W
wanghuancoder 已提交
1370
            self.func_test_value_int()
1371
        self.func_setUp()
W
wanghuancoder 已提交
1372 1373
        self.func_test_value_int()

1374 1375

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
1376

1377 1378 1379 1380 1381
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
1382

1383 1384 1385
    def set_dtype(self):
        self.dtype = "float32"

1386
    def func_test_value_float(self):
1387 1388 1389
        paddle.disable_static()
        self._test(3.3)

1390 1391 1392 1393 1394 1395 1396
    def test_value_float(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_float()
        self.func_setUp()
        self.func_test_value_float()

1397

1398
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
1399

1400 1401 1402 1403
    def set_dtype(self):
        self.dtype = "float64"


1404
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1405

1406
    def func_setUp(self):
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1428
        if isinstance(value, (int, float)):
1429 1430 1431 1432 1433
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1434
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1435 1436 1437 1438 1439
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
        self.assertEqual(self.tensor_x.inplace_version, 2)
1440
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1441 1442 1443 1444 1445
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
        self.assertEqual(self.tensor_x.inplace_version, 3)
1446
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1447 1448
        self.assertEqual(id_origin, id(self.tensor_x))

1449
    def func_test_value_tensor(self):
1450 1451 1452
        paddle.disable_static()
        self._test(self.tensor_value)

1453 1454 1455 1456 1457 1458 1459 1460
    def test_value_tensor(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_tensor()
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1461 1462 1463
        paddle.disable_static()
        self._test(self.np_value)

1464 1465 1466 1467 1468 1469 1470 1471
    def test_value_numpy(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_numpy()
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1472 1473 1474
        paddle.disable_static()
        self._test(10)

1475 1476 1477 1478 1479 1480 1481
    def test_value_int(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_value_int()
        self.func_setUp()
        self.func_test_value_int()

1482 1483

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1499
        if isinstance(value, (int, float)):
1500 1501 1502 1503 1504
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1505
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1506 1507 1508
        self.assertEqual(id_origin, id(self.tensor_x))


1509
class TestVarBaseInplaceVersion(unittest.TestCase):
1510

1511
    def func_test_setitem(self):
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1523 1524 1525 1526 1527 1528
    def test_setitem(self):
        with _test_eager_guard():
            self.func_test_setitem()
        self.func_test_setitem()

    def func_test_bump_inplace_version(self):
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)

1539 1540 1541 1542 1543
    def test_bump_inplace_version(self):
        with _test_eager_guard():
            self.func_test_bump_inplace_version()
        self.func_test_bump_inplace_version()

1544

1545
class TestVarBaseSlice(unittest.TestCase):
1546

1547
    def func_test_slice(self):
1548 1549 1550 1551 1552 1553 1554
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())

1555 1556 1557 1558 1559
    def test_slice(self):
        with _test_eager_guard():
            self.func_test_slice()
        self.func_test_slice()

1560 1561

class TestVarBaseClear(unittest.TestCase):
1562

1563
    def func_test_clear(self):
1564 1565 1566 1567 1568 1569
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")

1570 1571 1572 1573 1574
    def test_clear(self):
        with _test_eager_guard():
            self.func_test_clear()
        self.func_test_clear()

1575 1576

class TestVarBaseOffset(unittest.TestCase):
1577

1578
    def func_offset(self):
1579 1580 1581 1582 1583 1584 1585 1586
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)

1587 1588 1589 1590 1591
    def test_offset(self):
        with _test_eager_guard():
            self.func_offset()
        self.func_offset()

1592

1593
class TestVarBaseShareBufferTo(unittest.TestCase):
1594

1595
    def func_test_share_buffer_To(self):
1596
        paddle.disable_static()
1597 1598 1599
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
1600 1601 1602 1603
        if _in_legacy_dygraph():
            dst = core.VarBase()
        else:
            dst = core.eager.Tensor()
1604 1605
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1606

1607 1608 1609 1610 1611
    def test_share_buffer_To(self):
        with _test_eager_guard():
            self.func_test_share_buffer_To()
        self.func_test_share_buffer_To()

1612 1613

class TestVarBaseTo(unittest.TestCase):
1614

1615
    def func_setUp(self):
1616 1617 1618 1619
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1620
    def func_test_to_api(self):
1621 1622
        x_double = self.x._to(dtype='double')
        self.assertEqual(x_double.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1623
        np.testing.assert_allclose(self.np_x, x_double, rtol=1e-05)
1624 1625 1626

        x_ = self.x._to()
        self.assertEqual(self.x.dtype, paddle.fluid.core.VarDesc.VarType.FP64)
1627
        np.testing.assert_allclose(self.np_x, x_, rtol=1e-05)
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

        if paddle.fluid.is_compiled_with_cuda():
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu1.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP64)

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
            self.assertEqual(x_gpu2.dtype,
                             paddle.fluid.core.VarDesc.VarType.FP16)

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
        self.assertEqual(x_cpu1.dtype, paddle.fluid.core.VarDesc.VarType.FP64)

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
        self.assertEqual(x_cpu2.dtype, paddle.fluid.core.VarDesc.VarType.FP16)

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1667 1668 1669 1670 1671 1672 1673
    def test_to_api(self):
        with _test_eager_guard():
            self.func_setUp()
            self.func_test_to_api()
        self.func_setUp()
        self.func_test_to_api()

1674 1675

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1676

1677
    def func_test_varbase_init(self):
1678 1679 1680 1681 1682 1683 1684
        paddle.disable_static()
        t = fluid.Tensor()
        np_x = np.random.random((3, 8, 8))
        t.set(np_x, fluid.CPUPlace())

        if paddle.fluid.is_compiled_with_cuda():
            device = paddle.CUDAPlace(0)
1685 1686 1687 1688
            if _in_legacy_dygraph():
                tmp = fluid.core.VarBase(t, device)
            else:
                tmp = fluid.core.eager.Tensor(t, device)
1689 1690 1691 1692
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
1693 1694 1695 1696
        if _in_legacy_dygraph():
            tmp = fluid.core.VarBase(t, device)
        else:
            tmp = fluid.core.eager.Tensor(t, device)
1697 1698
        self.assertEqual(tmp.numpy().all(), np_x.all())

1699 1700 1701 1702 1703
    def test_varbase_init(self):
        with _test_eager_guard():
            self.func_test_varbase_init()
        self.func_test_varbase_init()

1704 1705

class TestVarBaseNumel(unittest.TestCase):
1706

1707
    def func_test_numel_normal(self):
1708 1709 1710 1711 1712 1713 1714
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1715 1716 1717 1718 1719 1720
    def test_numel_normal(self):
        with _test_eager_guard():
            self.func_test_numel_normal()
        self.func_test_numel_normal()

    def func_test_numel_without_holder(self):
1721
        paddle.disable_static()
1722 1723 1724 1725
        if _in_legacy_dygraph():
            x_without_holder = core.VarBase()
        else:
            x_without_holder = core.eager.Tensor()
1726 1727 1728
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1729 1730 1731 1732 1733
    def ttest_numel_without_holder(self):
        with _test_eager_guard():
            self.func_test_numel_without_holder()
        self.func_test_numel_without_holder()

1734 1735

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1736

1737
    def func_test_copy_gradient_from(self):
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())

1748 1749 1750 1751 1752
    def test_copy_gradient_from(self):
        with _test_eager_guard():
            self.func_test_copy_gradient_from()
        self.func_test_copy_gradient_from()

1753

1754
class TestEagerTensorGradNameValue(unittest.TestCase):
1755

1756 1757 1758 1759 1760 1761 1762 1763
    def test_eager_tensor_grad_name_value(self):
        with _test_eager_guard():
            a_np = np.array([2, 3]).astype('float32')
            a = paddle.to_tensor(a_np)
            a.stop_gradient = False
            b = a**2
            self.assertEqual(a._grad_value(), None)
            b.backward()
1764
            # Note, for new dygraph, there are no generated grad name, so we skip the name check.
1765 1766 1767
            self.assertNotEqual(a._grad_value(), None)


L
Leo Chen 已提交
1768 1769
if __name__ == '__main__':
    unittest.main()