test_unique_with_counts.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
18
import paddle.fluid as fluid
19 20 21 22
import paddle.fluid.core as core


class TestUniqueWithCountsOp(OpTest):
23

24 25 26 27 28 29 30 31
    def setUp(self):
        self.op_type = "unique_with_counts"
        self.init_config()

    def test_check_output(self):
        self.check_output()

    def init_config(self):
32 33 34
        self.inputs = {
            'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'),
        }
35 36
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
37 38 39
            'Out': np.array([2, 3, 1, 5], dtype='int64'),
            'Index': np.array([0, 1, 1, 2, 3, 1], dtype='int32'),
            'Count': np.array([1, 3, 1, 1], dtype='int32')
40 41 42 43
        }


class TestOne(TestUniqueWithCountsOp):
44

45
    def init_config(self):
46 47 48
        self.inputs = {
            'X': np.array([2], dtype='int64'),
        }
49 50
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
51 52 53
            'Out': np.array([2], dtype='int64'),
            'Index': np.array([0], dtype='int32'),
            'Count': np.array([1], dtype='int32')
54 55 56 57
        }


class TestRandom(TestUniqueWithCountsOp):
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    def init_config(self):
        input_data = np.random.randint(0, 100, (2000, ), dtype='int64')
        self.inputs = {'X': input_data}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
        np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
                                                       True)
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
            [list(target_out).index(i) for i in self.inputs['X']],
            dtype='int64')
        count = [0 for i in range(len(np_unique))]
        for i in range(target_index.shape[0]):
            count[target_index[i]] += 1
        target_count = np.array(count, dtype='int64')
        self.outputs = {
            'Out': target_out,
            'Index': target_index,
            'Count': target_count
        }


82
class TestUniqueWithCountsRaiseError(unittest.TestCase):
83

84
    def test_errors(self):
85

86 87 88 89 90 91 92 93 94 95 96 97
        def test_type():
            fluid.layers.unique_with_counts([10])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data = fluid.data(shape=[10], dtype="float16", name="input")
            fluid.layers.unique_with_counts(data)

        self.assertRaises(TypeError, test_dtype)


98 99 100
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestOneGPU(TestUniqueWithCountsOp):
101

102
    def init_config(self):
103 104 105
        self.inputs = {
            'X': np.array([2], dtype='int64'),
        }
106 107
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
108 109 110
            'Out': np.array([2], dtype='int64'),
            'Index': np.array([0], dtype='int32'),
            'Count': np.array([1], dtype='int32')
111 112 113 114 115 116 117 118 119 120 121
        }

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestRandomGPU(TestUniqueWithCountsOp):
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def init_config(self):
        input_data = np.random.randint(0, 100, (2000, ), dtype='int64')
        self.inputs = {'X': input_data}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
        np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
                                                       True)
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
            [list(target_out).index(i) for i in self.inputs['X']],
            dtype='int64')
        count = [0 for i in range(len(np_unique))]
        for i in range(target_index.shape[0]):
            count[target_index[i]] += 1
        target_count = np.array(count, dtype='int64')
        self.outputs = {
            'Out': target_out,
            'Index': target_index,
            'Count': target_count
        }

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


151 152
if __name__ == "__main__":
    unittest.main()