test_dist_fleet_base.py 18.7 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle.distributed.fleet.utils.ps_util import DistributedInfer
16 17 18
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.fluid as fluid
19
import paddle
20 21 22
"""
    high level unit test for distribute fleet.
"""
23

T
tangwei12 已提交
24 25
import os
import sys
26
import subprocess
T
tangwei12 已提交
27

28
import shutil
29 30 31 32
import argparse
from contextlib import closing
import socket
import time
33
import tempfile
34
import unittest
T
tangwei12 已提交
35

36
import paddle
37

T
tangwei12 已提交
38 39
paddle.enable_static()

C
Chengmo 已提交
40 41
__all__ = ['FleetDistRunnerBase', 'TestFleetBase', 'runtime_main']

T
tangwei12 已提交
42 43
RUN_STEP = 5
LEARNING_RATE = 0.01
44
DIST_UT_PORT = 0
T
tangwei12 已提交
45 46 47


class FleetDistRunnerBase(object):
48 49 50 51 52 53
    """
        run_pserver,run_trainer : after init role, using transpiler split program
        net : implment by child class, the network of model
        do training : exe run program
    """

54 55 56
    def __init__(self):
        self._exe = None

57
    def build_role(self, args):
58

59 60
        if args.role.upper() == "PSERVER":
            role = role_maker.UserDefinedRoleMaker(
61
                is_collective=False,
62
                init_gloo=False,
63
                path=args.gloo_path,
64 65
                current_id=args.current_id,
                role=role_maker.Role.SERVER,
66
                worker_endpoints=args.trainer_endpoints.split(","),
67 68 69
                server_endpoints=args.endpoints.split(","))
        else:
            role = role_maker.UserDefinedRoleMaker(
70
                is_collective=False,
71
                init_gloo=False,
72
                path=args.gloo_path,
73 74
                current_id=args.current_id,
                role=role_maker.Role.WORKER,
75
                worker_endpoints=args.trainer_endpoints.split(","),
76
                server_endpoints=args.endpoints.split(","))
77
        self.role = role
78 79 80
        return role

    def build_strategy(self, args):
81 82 83 84
        if args.mode == "sync":
            self.strategy = paddle.distributed.fleet.DistributedStrategy()
            self.strategy.a_sync = False
        elif args.mode == "async":
85 86
            self.strategy = paddle.distributed.fleet.DistributedStrategy()
            self.strategy.a_sync = True
1
123malin 已提交
87
        elif args.mode == "geo":
88 89 90 91 92
            self.strategy = paddle.distributed.fleet.DistributedStrategy()
            self.strategy.a_sync = True
            self.strategy.a_sync_configs = {
                "k_steps": args.geo_sgd_need_push_nums
            }
93 94 95 96
        elif args.mode == "auto":
            self.strategy = paddle.distributed.fleet.DistributedStrategy()
            self.strategy.auto = True

97 98 99 100
        self.dump_param = os.getenv("dump_param", "").split(",")
        self.dump_fields = os.getenv("dump_fields", "").split(",")
        self.dump_fields_path = os.getenv("dump_fields_path", "")
        debug = int(os.getenv("Debug", "0"))
101
        # TODO(update strategy to support dump params)
102
        if False:  # debug:
103
            self.strategy.set_debug_opt({
104 105 106 107 108 109
                "dump_param":
                self.dump_param,
                "dump_fields":
                self.dump_fields,
                "dump_fields_path":
                self.dump_fields_path
110 111
            })

1
123malin 已提交
112 113
        return self.strategy

114
    def build_optimizer(self, avg_cost, strategy):
C
Chengmo 已提交
115
        use_grad_clip = int(os.getenv('GRAD_CLIP', 0))
116
        grad_clip = None
C
Chengmo 已提交
117 118 119
        if use_grad_clip:
            # 1: clip_by_value; 2: clip_by_norm; 3:clip_by_global_norm
            if use_grad_clip == 1:
120
                grad_clip = paddle.nn.ClipGradByValue(min=-5.0, max=5.0)
C
Chengmo 已提交
121
            elif use_grad_clip == 2:
122
                grad_clip = paddle.nn.ClipGradByNorm(2.0)
C
Chengmo 已提交
123
            elif use_grad_clip == 3:
124
                grad_clip = paddle.nn.ClipGradByGlobalNorm(2.0)
C
Chengmo 已提交
125

126
        use_decay = int(os.getenv("USE_DECAY", "0"))
127
        if use_decay:
128 129
            scheduler = paddle.optimizer.lr.ExponentialDecay(
                learning_rate=LEARNING_RATE, gamma=0.999, verbose=True)
130
            optimizer = fluid.optimizer.SGD(scheduler, grad_clip=grad_clip)
131 132
            """
            # learning rate decay method before 2.0
133 134 135 136 137
            optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=LEARNING_RATE,
                    decay_steps=500,
                    decay_rate=0.969,
138
                    staircase=True))
139
            """
140
        else:
141
            optimizer = fluid.optimizer.SGD(LEARNING_RATE, grad_clip=grad_clip)
142
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
T
tangwei12 已提交
143 144
        optimizer.minimize(avg_cost)

145
    def run_pserver(self, args):
T
tangwei12 已提交
146 147 148
        fleet.init_server()
        fleet.run_server()

1
123malin 已提交
149 150 151 152 153
    def run_dataset_trainer(self, args):
        out = self.do_dataset_training(fleet)

    def run_pyreader_trainer(self, args):
        out = self.do_pyreader_training(fleet)
T
tangwei12 已提交
154

155
    def net(self, args, batch_size=4, lr=0.01):
T
tangwei12 已提交
156 157 158
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

159 160 161 162 163 164 165 166 167 168
    def get_executor(self):
        if self._exe is None:
            device_env = os.getenv("DEVICE", 'cpu')
            if device_env == 'cpu':
                device = fluid.CPUPlace()
            elif device_env == 'gpu':
                device = fluid.CUDAPlace(0)
            self._exe = fluid.Executor(device)
        return self._exe

1
123malin 已提交
169
    def do_dataset_training(self, fleet):
T
tangwei12 已提交
170
        raise NotImplementedError(
1
123malin 已提交
171 172 173 174 175
            "do_dataset_training should be implemented by child classes.")

    def do_pyreader_training(self, fleet):
        raise NotImplementedError(
            "do_pyreader_training should be implemented by child classes.")
T
tangwei12 已提交
176

T
tangwei12 已提交
177 178 179 180
    def do_distributed_testing(self, fleet):
        raise NotImplementedError(
            "do_distributed_testing should be implemented by child classes.")

T
tangwei12 已提交
181 182

class TestFleetBase(unittest.TestCase):
183 184 185 186 187
    """
        start_pserver,start_trainer : add start cmd to test
        run_cluster : using multi process to test distribute program
    """

T
tangwei12 已提交
188 189 190
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

191 192 193 194
    def tearDown(self):
        t = time.time() - self.startTime
        print('%s: %.3f' % (self.__class__.__name__, t))

T
tangwei12 已提交
195
    def setUp(self):
196 197
        self.startTime = time.time()

1
123malin 已提交
198 199
        self._mode = "sync"
        self._reader = "pyreader"
T
tangwei12 已提交
200 201
        self._trainers = 2
        self._pservers = 2
T
tangwei12 已提交
202
        self._need_test = 0
203
        self._model_dir = ""
T
tangwei12 已提交
204
        self._port_set = set()
205 206 207 208 209 210 211 212 213

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
214 215 216
            self._tr_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT + 2, DIST_UT_PORT + 3)
            DIST_UT_PORT += 4
217 218 219
        else:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
220 221
            self._tr_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
222

T
tangwei12 已提交
223
        self._python_interp = sys.executable
224
        self._geo_sgd_need_push_nums = 5
C
Chengmo 已提交
225
        self._grad_clip_mode = 0
T
tangwei12 已提交
226 227 228
        self._setup_config()

    def _find_free_port(self):
229

T
tangwei12 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _start_pserver(self, cmd, required_envs):
        ps0_cmd, ps1_cmd = cmd.format(0), cmd.format(1)

T
tangwei12 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        log_dirname = required_envs.get("LOG_DIRNAME", tempfile.gettempdir())
        log_prename = required_envs.get("LOG_PREFIX", "")

        if log_dirname:
            log_prename += "_"

        ps0_err_log = os.path.join(log_dirname, log_prename + "ps0_stderr.log")
        ps1_err_log = os.path.join(log_dirname, log_prename + "ps1_stderr.log")
        ps0_out_log = os.path.join(log_dirname, log_prename + "ps0_stdout.log")
        ps1_out_log = os.path.join(log_dirname, log_prename + "ps1_stdout.log")

        ps0_err = open(ps0_err_log, "wb+")
        ps1_err = open(ps1_err_log, "wb+")

        ps0_out = open(ps0_out_log, "wb+")
        ps1_out = open(ps1_out_log, "wb+")
T
tangwei12 已提交
261

262 263 264 265
        ps0_proc = subprocess.Popen(ps0_cmd.strip().split(" "),
                                    stdout=ps0_out,
                                    stderr=ps0_err,
                                    env=required_envs)
T
tangwei12 已提交
266

267 268 269 270
        ps1_proc = subprocess.Popen(ps1_cmd.strip().split(" "),
                                    stdout=ps1_out,
                                    stderr=ps1_err,
                                    env=required_envs)
T
tangwei12 已提交
271 272 273

        return ((ps0_proc, ps0_out, ps0_err, ps0_out_log, ps0_err_log),
                (ps1_proc, ps1_out, ps1_err, ps1_out_log, ps1_err_log))
T
tangwei12 已提交
274 275 276 277

    def _start_trainer(self, cmd, required_envs):
        tr0_cmd, tr1_cmd = cmd.format(0), cmd.format(1)

T
tangwei12 已提交
278 279 280 281 282 283 284 285 286 287
        log_dirname = required_envs.get("LOG_DIRNAME", tempfile.gettempdir())
        log_prename = required_envs.get("LOG_PREFIX", "")

        if log_dirname:
            log_prename += "_"

        tr0_err_log = os.path.join(log_dirname, log_prename + "tr0_stderr.log")
        tr1_err_log = os.path.join(log_dirname, log_prename + "tr1_stderr.log")
        tr0_out_log = os.path.join(log_dirname, log_prename + "tr0_stdout.log")
        tr1_out_log = os.path.join(log_dirname, log_prename + "tr1_stdout.log")
T
tangwei12 已提交
288

T
tangwei12 已提交
289 290 291 292 293
        tr0_err = open(tr0_err_log, "wb+")
        tr1_err = open(tr1_err_log, "wb+")

        tr0_out = open(tr0_out_log, "wb+")
        tr1_out = open(tr1_out_log, "wb+")
294

295 296 297 298
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(" "),
                                    stdout=tr0_out,
                                    stderr=tr0_err,
                                    env=required_envs)
T
tangwei12 已提交
299

300 301 302 303
        tr1_proc = subprocess.Popen(tr1_cmd.strip().split(" "),
                                    stdout=tr1_out,
                                    stderr=tr1_err,
                                    env=required_envs)
T
tangwei12 已提交
304

T
tangwei12 已提交
305 306
        return ((tr0_proc, tr0_out, tr0_err, tr0_out_log, tr0_err_log),
                (tr1_proc, tr1_out, tr1_err, tr1_out_log, tr1_err_log))
T
tangwei12 已提交
307 308

    def _run_cluster(self, model, envs):
309
        env = {'GRAD_CLIP': str(self._grad_clip_mode), 'WITH_DISTRIBUTE': 'ON'}
310
        python_path = self._python_interp
311 312
        gloo_path = tempfile.mkdtemp()

313 314 315
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            python_path += " -m coverage run --branch -p"
316
        env.update(envs)
T
tangwei12 已提交
317

T
tangwei12 已提交
318
        tr_cmd = "{0} {1} --role trainer --endpoints {2} --trainer_endpoints {3} --current_id {{}} --trainers {4} --mode {5} --geo_sgd_need_push_nums {6} --reader {7} --gloo_path {8} --test {9}".format(
319 320
            python_path, model, self._ps_endpoints, self._tr_endpoints,
            self._trainers, self._mode, self._geo_sgd_need_push_nums,
T
tangwei12 已提交
321
            self._reader, gloo_path, self._need_test)
T
tangwei12 已提交
322

T
tangwei12 已提交
323
        ps_cmd = "{0} {1} --role pserver --endpoints {2} --trainer_endpoints {3} --current_id {{}} --trainers {4} --mode {5} --geo_sgd_need_push_nums {6} --reader {7} --gloo_path {8} --test {9}".format(
324 325
            python_path, model, self._ps_endpoints, self._tr_endpoints,
            self._trainers, self._mode, self._geo_sgd_need_push_nums,
T
tangwei12 已提交
326
            self._reader, gloo_path, self._need_test)
327

328 329 330 331
        if self._model_dir:
            tr_cmd += " --model_dir {}".format(self._model_dir)
            ps_cmd += " --model_dir {}".format(self._model_dir)

T
tangwei12 已提交
332
        # Run dist train to compare with local results
T
tangwei12 已提交
333 334 335 336 337 338 339 340
        ps0, ps1 = self._start_pserver(ps_cmd, env)
        tr0, tr1 = self._start_trainer(tr_cmd, env)

        ps0_proc, ps0_out, ps0_err, ps0_out_log, ps0_err_log = ps0
        ps1_proc, ps1_out, ps1_err, ps1_out_log, ps1_err_log = ps1

        tr0_proc, tr0_out, tr0_err, tr0_out_log, tr0_err_log = tr0
        tr1_proc, tr1_out, tr1_err, tr1_out_log, tr1_err_log = tr1
T
tangwei12 已提交
341 342

        # Wait until trainer process terminate
343 344
        #time_out = 120
        time_out = 60
T
tangwei12 已提交
345
        cur_time = 0
346

T
tangwei12 已提交
347
        while True:
T
tangwei12 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361
            stat0 = tr0_proc.poll()
            stat1 = tr1_proc.poll()

            if stat0 is not None and stat1 is not None:
                break
            else:
                time.sleep(0.5)
                cur_time += 0.5

            if cur_time >= time_out:
                tr0_proc.terminate()
                tr1_proc.terminate()
                tr0_proc.wait()
                tr1_proc.wait()
T
tangwei12 已提交
362 363
                break

T
tangwei12 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
        tr0_ret = tr0_proc.returncode
        tr1_ret = tr1_proc.returncode

        ps0_proc.kill()
        ps1_proc.kill()
        ps0_proc.wait()
        ps1_proc.wait()

        def is_listen_failed(logx):
            is_lf = False

            listen_rgx = "Fail to listen"

            with open(logx, "r") as rb:
                for line in rb.readlines():
                    if listen_rgx in line:
                        is_lf = True
                        break
            return is_lf

        def catlog(logx):
            basename = os.path.basename(logx)
            print("\n================== Error {} begin =====================".
                  format(basename))
            os.system("cat {}".format(logx))
            print("================== Error {} end =====================\n".
                  format(basename))

        if tr0_ret != 0 or tr1_ret != 0:
            if is_listen_failed(ps0_err) or is_listen_failed(ps1_err):
                print("find parameter server port bind failed, skip the error")
                tr0_ret, tr1_ret = 0, 0
            else:
397 398 399 400
                for out, err in [(ps0_out_log, ps0_err_log),
                                 (ps1_out_log, ps1_err_log),
                                 (tr0_out_log, tr0_err_log),
                                 (tr1_out_log, tr1_err_log)]:
T
tangwei12 已提交
401 402 403 404 405 406 407 408
                    catlog(out)
                    catlog(err)

        for pipe in [
                tr0_err, tr0_out, tr1_err, tr1_out, ps0_err, ps0_out, ps1_err,
                ps1_out
        ]:
            pipe.close()
T
tangwei12 已提交
409

410
        shutil.rmtree(gloo_path)
T
tangwei12 已提交
411

C
Chengmo 已提交
412 413
        self.assertEqual(tr0_ret, 0, "something wrong in tr0, please check")
        self.assertEqual(tr1_ret, 0, "something wrong in tr1, please check")
T
tangwei12 已提交
414

T
tangwei12 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        return 0, 0

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={}):
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_rpc_deadline": "5000",  # 5sec to fail fast
            "http_proxy": ""
        }

        required_envs.update(need_envs)

        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"

        tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)


def runtime_main(test_class):
    parser = argparse.ArgumentParser(description='Run Fleet test.')
441 442 443 444
    parser.add_argument('--role',
                        type=str,
                        required=True,
                        choices=['pserver', 'trainer'])
T
tangwei12 已提交
445
    parser.add_argument('--endpoints', type=str, required=False, default="")
446 447 448 449
    parser.add_argument('--trainer_endpoints',
                        type=str,
                        required=False,
                        default="")
450
    parser.add_argument('--gloo_path', type=str, required=False, default="")
T
tangwei12 已提交
451 452
    parser.add_argument('--current_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
1
123malin 已提交
453
    parser.add_argument('--mode', type=str, required=False, default='geo')
454 455 456 457
    parser.add_argument('--geo_sgd_need_push_nums',
                        type=int,
                        required=False,
                        default=2)
1
123malin 已提交
458
    parser.add_argument('--reader', type=str, required=False, default='dataset')
T
tangwei12 已提交
459
    parser.add_argument('--test', type=int, required=False, default=0)
460
    parser.add_argument('--model_dir', type=str, required=False, default="")
T
tangwei12 已提交
461 462 463
    args = parser.parse_args()

    model = test_class()
464
    role = model.build_role(args)
465

T
tangwei12 已提交
466
    # for distributed inference
467 468 469
    if args.test and args.model_dir != "":
        avg_cost = model.net(args, is_train=False)
        dist_infer = DistributedInfer()
470 471 472 473
        dist_infer.init_distributed_infer_env(exe=model.get_executor(),
                                              loss=model.avg_cost,
                                              role_maker=role,
                                              dirname=args.model_dir)
T
tangwei12 已提交
474

475 476 477 478 479
        if fleet.is_worker():
            with paddle.static.program_guard(
                    main_program=dist_infer.get_dist_infer_program()):
                model.do_distributed_testing(fleet)
                fleet.stop_worker()
T
tangwei12 已提交
480 481 482 483
            return

        if fleet.is_server():
            return
484

485 486 487 488
    fleet.init(role)
    strategy = model.build_strategy(args)
    avg_cost = model.net(args)
    model.build_optimizer(avg_cost, strategy)
489

T
tangwei12 已提交
490 491 492
    if args.role == "pserver":
        model.run_pserver(args)
    else:
1
123malin 已提交
493 494 495 496
        if args.reader == "dataset":
            model.run_dataset_trainer(args)
        else:
            model.run_pyreader_trainer(args)
T
tangwei12 已提交
497 498

        if args.test:
499 500 501
            test_origin_program = paddle.static.Program()
            test_startup_program = paddle.static.Program()
            with paddle.static.program_guard(
T
tangwei12 已提交
502 503
                    main_program=test_origin_program,
                    startup_program=test_startup_program):
504
                with paddle.utils.unique_name.guard():
T
tangwei12 已提交
505
                    avg_cost = model.net(args, is_train=False)
506 507
            dist_infer = DistributedInfer(main_program=test_origin_program,
                                          startup_program=test_startup_program)
508 509 510
            with paddle.static.program_guard(
                    main_program=dist_infer.get_dist_infer_program()):
                model.do_distributed_testing(fleet)
T
tangwei12 已提交
511
        fleet.stop_worker()