test_dataset.py 48.2 KB
Newer Older
X
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xjqbest 已提交
14
"""
X
xjqbest 已提交
15 16
TestCases for Dataset,
including create, config, run, etc.
X
xjqbest 已提交
17
"""
X
xjqbest 已提交
18

19
import paddle
X
xjqbest 已提交
20
import paddle.fluid as fluid
21
import paddle.fluid.core as core
X
xjqbest 已提交
22
import os
23
import tempfile
X
xjqbest 已提交
24 25 26 27
import unittest


class TestDataset(unittest.TestCase):
X
xjqbest 已提交
28
    """  TestCases for Dataset. """
29

Z
Zeng Jinle 已提交
30 31 32 33 34
    def setUp(self):
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

X
xjqbest 已提交
35
    def test_dataset_create(self):
X
xjqbest 已提交
36
        """ Testcase for dataset create. """
X
xjqbest 已提交
37
        try:
38
            dataset = paddle.distributed.InMemoryDataset()
X
xjqbest 已提交
39 40 41 42
        except:
            self.assertTrue(False)

        try:
43
            dataset = paddle.distributed.QueueDataset()
X
xjqbest 已提交
44 45 46
        except:
            self.assertTrue(False)

47
        try:
48
            dataset = paddle.distributed.fleet.dataset.FileInstantDataset()
49 50 51
        except:
            self.assertTrue(False)

X
xjqbest 已提交
52
        try:
53
            dataset = paddle.distributed.fleet.dataset.MyOwnDataset()
X
xjqbest 已提交
54 55 56 57
            self.assertTrue(False)
        except:
            self.assertTrue(True)

58 59 60 61 62 63 64
    def test_config(self):
        """
        Testcase for python config.
        """
        dataset = fluid.InMemoryDataset()
        dataset.set_parse_ins_id(True)
        dataset.set_parse_content(True)
65
        dataset._set_trainer_num(1)
66 67
        self.assertTrue(dataset.parse_ins_id)
        self.assertTrue(dataset.parse_content)
68
        self.assertEqual(dataset.trainer_num, 1)
69

70 71 72 73 74 75 76 77
    def test_shuffle_by_uid(self):
        """
        Testcase for shuffle_by_uid.
        """
        dataset = paddle.distributed.InMemoryDataset()
        dataset._set_uid_slot('6048')
        dataset._set_shuffle_by_uid(True)

78 79 80 81
    def test_run_with_dump(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
82 83 84 85 86 87

        temp_dir = tempfile.TemporaryDirectory()
        dump_a_path = os.path.join(temp_dir.name, 'test_run_with_dump_a.txt')
        dump_b_path = os.path.join(temp_dir.name, 'test_run_with_dump_b.txt')

        with open(dump_a_path, "w") as f:
88 89 90 91
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
92
        with open(dump_b_path, "w") as f:
93 94 95 96 97 98 99 100 101
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
102 103 104 105
            var = fluid.layers.data(name=slot,
                                    shape=[1],
                                    dtype="int64",
                                    lod_level=1)
106 107
            slots_vars.append(var)

108
        dataset = paddle.distributed.InMemoryDataset()
109 110 111 112
        dataset.init(batch_size=32,
                     thread_num=3,
                     pipe_command="cat",
                     use_var=slots_vars)
113
        dataset.update_settings(pipe_command="cat1")
114 115 116 117
        dataset._init_distributed_settings(parse_ins_id=True,
                                           parse_content=True,
                                           fea_eval=True,
                                           candidate_size=10000)
118
        dataset.set_filelist([dump_a_path, dump_b_path])
119 120 121
        dataset.load_into_memory()
        dataset.local_shuffle()

122 123 124 125 126 127
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        exe.run(startup_program)
128 129
        for i in range(2):
            try:
130
                exe.train_from_dataset(main_program, dataset)
131 132 133 134 135
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

136
        temp_dir.cleanup()
137

X
xjqbest 已提交
138
    def test_dataset_config(self):
X
xjqbest 已提交
139
        """ Testcase for dataset configuration. """
X
xjqbest 已提交
140 141 142 143 144
        dataset = fluid.core.Dataset("MultiSlotDataset")
        dataset.set_thread_num(12)
        dataset.set_filelist(["a.txt", "b.txt", "c.txt"])
        dataset.set_trainer_num(4)
        dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
145
        dataset.set_download_cmd("./read_from_afs my_fs_name my_fs_ugi")
146
        dataset.set_enable_pv_merge(False)
X
xjqbest 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

        thread_num = dataset.get_thread_num()
        self.assertEqual(thread_num, 12)

        filelist = dataset.get_filelist()
        self.assertEqual(len(filelist), 3)
        self.assertEqual(filelist[0], "a.txt")
        self.assertEqual(filelist[1], "b.txt")
        self.assertEqual(filelist[2], "c.txt")

        trainer_num = dataset.get_trainer_num()
        self.assertEqual(trainer_num, 4)

        name, ugi = dataset.get_hdfs_config()
        self.assertEqual(name, "my_fs_name")
        self.assertEqual(ugi, "my_fs_ugi")

164 165 166 167 168 169 170
        download_cmd = dataset.get_download_cmd()
        self.assertEqual(download_cmd, "./read_from_afs my_fs_name my_fs_ugi")

    def test_set_download_cmd(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
171 172 173 174 175 176
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name,
                                 "afs:test_in_memory_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name,
                                 "afs:test_in_memory_dataset_run_b.txt")

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        with open(filename1, "w") as f:
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(filename2, "w") as f:
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
192 193 194 195
            var = fluid.layers.data(name=slot,
                                    shape=[1],
                                    dtype="int64",
                                    lod_level=1)
196 197
            slots_vars.append(var)

198
        dataset = paddle.distributed.InMemoryDataset()
199 200 201 202 203
        dataset.init(batch_size=32,
                     thread_num=3,
                     pipe_command="cat",
                     download_cmd="cat",
                     use_var=slots_vars)
204 205
        dataset.set_filelist([filename1, filename2])
        dataset.load_into_memory()
206 207 208 209 210
        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
211
        exe = fluid.Executor(fluid.CPUPlace())
212
        exe.run(startup_program)
213
        if self.use_data_loader:
214 215
            data_loader = fluid.io.DataLoader.from_dataset(
                dataset, fluid.cpu_places(), self.drop_last)
216 217
            for i in range(self.epoch_num):
                for data in data_loader():
218
                    exe.run(main_program, feed=data)
219 220 221
        else:
            for i in range(self.epoch_num):
                try:
222
                    exe.train_from_dataset(main_program, dataset)
223 224 225
                except Exception as e:
                    self.assertTrue(False)

226
        temp_dir.cleanup()
227

X
xjqbest 已提交
228
    def test_in_memory_dataset_run(self):
X
xjqbest 已提交
229
        """
X
xjqbest 已提交
230
        Testcase for InMemoryDataset from create to run.
X
xjqbest 已提交
231
        """
232 233 234 235 236 237 238
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset_run_b.txt")

        with open(filename1, "w") as f:
X
xjqbest 已提交
239 240 241 242
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
243
        with open(filename2, "w") as f:
X
xjqbest 已提交
244 245 246 247 248 249
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

250
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
251 252
        slots_vars = []
        for slot in slots:
253 254 255 256
            var = fluid.layers.data(name=slot,
                                    shape=[1],
                                    dtype="int64",
                                    lod_level=1)
X
xjqbest 已提交
257 258
            slots_vars.append(var)

259
        dataset = paddle.distributed.InMemoryDataset()
260 261 262 263
        dataset.init(batch_size=32,
                     thread_num=3,
                     pipe_command="cat",
                     use_var=slots_vars)
264
        dataset._init_distributed_settings(fea_eval=True, candidate_size=1)
265
        dataset.set_filelist([filename1, filename2])
X
xjqbest 已提交
266
        dataset.load_into_memory()
267
        dataset.slots_shuffle(["slot1"])
X
xjqbest 已提交
268
        dataset.local_shuffle()
269 270
        dataset._set_generate_unique_feasigns(True, 15)
        dataset._generate_local_tables_unlock(0, 11, 1, 25, 15)
X
xjqbest 已提交
271 272
        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
273
        if self.use_data_loader:
274 275
            data_loader = fluid.io.DataLoader.from_dataset(
                dataset, fluid.cpu_places(), self.drop_last)
Z
Zeng Jinle 已提交
276 277 278 279 280 281 282 283 284 285
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
286

287
        temp_dir.cleanup()
X
xjqbest 已提交
288

289 290 291 292
    def test_in_memory_dataset_masterpatch(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
293 294 295 296 297 298 299
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset_masterpatch_a.txt")
        filename2 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset_masterpatch_b.txt")

        with open(filename1, "w") as f:
300 301 302 303 304 305 306 307 308 309
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
310
        with open(filename2, "w") as f:
311 312 313 314 315 316 317 318 319 320 321 322
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            for slot in slots[:2]:
323 324 325 326
                var = fluid.layers.data(name=slot,
                                        shape=[1],
                                        dtype="int64",
                                        lod_level=1)
327 328
                slots_vars.append(var)
            for slot in slots[2:]:
329 330 331 332
                var = fluid.layers.data(name=slot,
                                        shape=[1],
                                        dtype="float32",
                                        lod_level=1)
333 334
                slots_vars.append(var)

335
        dataset = paddle.distributed.InMemoryDataset()
336 337 338 339
        dataset.init(batch_size=32,
                     thread_num=1,
                     pipe_command="cat",
                     use_var=slots_vars)
340
        dataset._init_distributed_settings(parse_ins_id=True)
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch_a.txt",
            "test_in_memory_dataset_masterpatch_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

359 360
        #dataset._set_merge_by_lineid(2)
        dataset.update_settings(merge_size=2)
361 362
        dataset.dataset.merge_by_lineid()

363
        temp_dir.cleanup()
364

365 366 367 368
    def test_in_memory_dataset_masterpatch1(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
369 370 371 372 373 374 375
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset_masterpatch1_a.txt")
        filename2 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset_masterpatch1_b.txt")

        with open(filename1, "w") as f:
376 377 378 379 380 381 382 383 384 385
            data = "1 id1 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 id1 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 id2 1 1 1 1 1 0 1 0\n"
            data += "1 id3 1 0 1 0 1 1 1 1\n"
            data += "1 id3 1 1 1 1 1 0 1 0\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id4 1 0 1 0 1 1 1 1\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            data += "1 id5 1 1 1 1 1 0 1 0\n"
            f.write(data)
386
        with open(filename2, "w") as f:
387 388 389 390 391 392 393 394 395 396
            data = "1 id6 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 id6 1 1 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 id6 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 id6 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots_vars = []
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
            var1 = fluid.layers.data(name="slot1",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=0)
            var2 = fluid.layers.data(name="slot2",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=0)
            var3 = fluid.layers.data(name="slot3",
                                     shape=[1],
                                     dtype="float32",
                                     lod_level=0)
            var4 = fluid.layers.data(name="slot4",
                                     shape=[1],
                                     dtype="float32",
                                     lod_level=0)
413 414
            slots_vars = [var1, var2, var3, var4]

415
        dataset = paddle.distributed.InMemoryDataset()
416 417 418 419
        dataset.init(batch_size=32,
                     thread_num=1,
                     pipe_command="cat",
                     use_var=slots_vars)
420
        dataset._init_distributed_settings(parse_ins_id=True)
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
        dataset.set_filelist([
            "test_in_memory_dataset_masterpatch1_a.txt",
            "test_in_memory_dataset_masterpatch1_b.txt"
        ])
        dataset.load_into_memory()
        dataset.local_shuffle()

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup_program)

        for i in range(2):
            try:
                exe.train_from_dataset(train_program, dataset)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

439
        dataset._set_merge_by_lineid(2)
440 441
        dataset.dataset.merge_by_lineid()

442
        temp_dir.cleanup()
443

444 445 446 447 448 449
    def test_in_memory_dataset_run_2(self):
        """
        Testcase for InMemoryDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
450 451 452 453 454 455 456
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset_run_b.txt")

        with open(filename1, "w") as f:
457 458 459 460
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
461
        with open(filename2, "w") as f:
462 463 464 465 466 467 468 469 470
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
471 472 473 474
            var = fluid.layers.data(name=slot,
                                    shape=[1],
                                    dtype="float32",
                                    lod_level=1)
475 476
            slots_vars.append(var)

477
        dataset = paddle.distributed.InMemoryDataset()
478 479 480 481
        dataset.init(batch_size=32,
                     thread_num=3,
                     pipe_command="cat",
                     use_var=slots_vars)
482
        dataset.set_filelist([filename1, filename2])
483 484 485
        dataset.load_into_memory()
        dataset.local_shuffle()

486 487
        exe = fluid.Executor(fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
488
        exe.run(fluid.default_startup_program())
489 490 491 492

        for i in range(2):
            try:
                exe.train_from_dataset(fluid.default_main_program(), dataset)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
                exe.train_from_dataset(fluid.default_main_program(),
                                       dataset,
                                       thread=1)
                exe.train_from_dataset(fluid.default_main_program(),
                                       dataset,
                                       thread=2)
                exe.train_from_dataset(fluid.default_main_program(),
                                       dataset,
                                       thread=2)
                exe.train_from_dataset(fluid.default_main_program(),
                                       dataset,
                                       thread=3)
                exe.train_from_dataset(fluid.default_main_program(),
                                       dataset,
                                       thread=4)
508 509 510 511 512
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

Z
Zeng Jinle 已提交
513
        if self.use_data_loader:
514 515
            data_loader = fluid.io.DataLoader.from_dataset(
                dataset, fluid.cpu_places(), self.drop_last)
Z
Zeng Jinle 已提交
516 517 518 519 520 521 522 523 524 525
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
526

527 528 529
        dataset._set_merge_by_lineid(2)
        dataset._set_parse_ins_id(False)
        dataset._set_fleet_send_sleep_seconds(2)
530 531 532 533
        dataset.preload_into_memory()
        dataset.wait_preload_done()
        dataset.preload_into_memory(1)
        dataset.wait_preload_done()
534
        dataset.dataset.merge_by_lineid()
535 536
        dataset._set_merge_by_lineid(30)
        dataset._set_parse_ins_id(False)
537 538
        dataset.load_into_memory()
        dataset.dataset.merge_by_lineid()
539 540 541 542 543 544 545 546 547 548 549 550 551 552
        dataset.update_settings(batch_size=1,
                                thread_num=2,
                                input_type=1,
                                pipe_command="cat",
                                use_var=[],
                                fs_name="",
                                fs_ugi="",
                                download_cmd="cat",
                                merge_size=-1,
                                parse_ins_id=False,
                                parse_content=False,
                                fleet_send_batch_size=2,
                                fleet_send_sleep_seconds=2,
                                fea_eval=True)
553
        fleet_ptr = fluid.core.Fleet()
554
        fleet_ptr.set_client2client_config(1, 1, 1)
555
        fleet_ptr.get_cache_threshold(0)
556

557
        temp_dir.cleanup()
558

X
xjqbest 已提交
559
    def test_queue_dataset_run(self):
X
xjqbest 已提交
560
        """
X
xjqbest 已提交
561
        Testcase for QueueDataset from create to run.
X
xjqbest 已提交
562
        """
563 564 565 566 567
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name, "test_queue_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name, "test_queue_dataset_run_b.txt")

        with open(filename1, "w") as f:
X
xjqbest 已提交
568 569 570 571
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
572
        with open(filename2, "w") as f:
X
xjqbest 已提交
573 574 575 576 577 578
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

579
        slots = ["slot1", "slot2", "slot3", "slot4"]
X
xjqbest 已提交
580 581
        slots_vars = []
        for slot in slots:
582 583 584 585
            var = fluid.layers.data(name=slot,
                                    shape=[1],
                                    dtype="int64",
                                    lod_level=1)
X
xjqbest 已提交
586 587
            slots_vars.append(var)

588
        dataset = paddle.distributed.QueueDataset()
589 590 591 592
        dataset.init(batch_size=32,
                     thread_num=3,
                     pipe_command="cat",
                     use_var=slots_vars)
593
        dataset.set_filelist([filename1, filename2])
X
xjqbest 已提交
594 595 596

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
597
        if self.use_data_loader:
598 599
            data_loader = fluid.io.DataLoader.from_dataset(
                dataset, fluid.cpu_places(), self.drop_last)
Z
Zeng Jinle 已提交
600 601 602 603 604 605 606 607 608 609
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
X
xjqbest 已提交
610

611
        dataset2 = paddle.distributed.QueueDataset()
612 613 614 615
        dataset2.init(batch_size=32,
                      thread_num=3,
                      pipe_command="cat",
                      use_var=slots_vars)
616 617 618 619 620 621 622 623
        dataset.set_filelist([])
        try:
            exe.train_from_dataset(fluid.default_main_program(), dataset2)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

624
        temp_dir.cleanup()
X
xjqbest 已提交
625

626 627 628 629 630 631
    def test_queue_dataset_run_2(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
632 633 634 635 636
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name, "test_queue_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name, "test_queue_dataset_run_b.txt")

        with open(filename1, "w") as f:
637 638 639 640
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
641
        with open(filename2, "w") as f:
642 643 644 645 646 647 648 649 650
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1_f", "slot2_f", "slot3_f", "slot4_f"]
        slots_vars = []
        for slot in slots:
651 652 653 654
            var = fluid.layers.data(name=slot,
                                    shape=[1],
                                    dtype="float32",
                                    lod_level=1)
655 656
            slots_vars.append(var)

657
        dataset = paddle.distributed.QueueDataset()
658 659 660 661
        dataset.init(batch_size=32,
                     thread_num=3,
                     pipe_command="cat",
                     use_var=slots_vars)
662
        dataset.set_filelist([filename1, filename2])
663

664 665
        exe = fluid.Executor(fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
666 667
        exe.run(fluid.default_startup_program())
        if self.use_data_loader:
668 669
            data_loader = fluid.io.DataLoader.from_dataset(
                dataset, fluid.cpu_places(), self.drop_last)
670 671 672 673 674 675 676 677 678 679 680
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)

681
        temp_dir.cleanup()
682 683 684 685 686 687 688

    def test_queue_dataset_run_3(self):
        """
        Testcase for QueueDataset from create to run.
        Use CUDAPlace
        Use float type id
        """
689 690 691 692 693
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name, "test_queue_dataset_run_a.txt")
        filename2 = os.path.join(temp_dir.name, "test_queue_dataset_run_b.txt")

        with open(filename1, "w") as f:
694 695 696 697 698
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)
699
        with open(filename2, "w") as f:
700 701 702 703 704 705 706 707 708
            data = "2 1 2 2 5 4 2 2 7 2 1 3\n"
            data += "2 6 2 2 1 4 2 2 4 2 2 3\n"
            data += "2 5 2 2 9 9 2 2 7 2 1 3\n"
            data += "2 7 2 2 1 9 2 3 7 2 5 3\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
709 710 711 712
            var = fluid.data(name=slot,
                             shape=[None, 1],
                             dtype="int64",
                             lod_level=1)
713 714
            slots_vars.append(var)

715
        dataset = paddle.distributed.InMemoryDataset()
716 717 718 719 720
        dataset.init(batch_size=1,
                     thread_num=2,
                     input_type=1,
                     pipe_command="cat",
                     use_var=slots_vars)
721
        dataset.set_filelist([filename1, filename2])
722 723
        dataset.load_into_memory()

724 725
        exe = fluid.Executor(fluid.CPUPlace(
        ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
726
        exe.run(fluid.default_startup_program())
Z
Zeng Jinle 已提交
727
        if self.use_data_loader:
728 729
            data_loader = fluid.io.DataLoader.from_dataset(
                dataset, fluid.cpu_places(), self.drop_last)
Z
Zeng Jinle 已提交
730 731 732 733 734 735 736 737 738 739
            for i in range(self.epoch_num):
                for data in data_loader():
                    exe.run(fluid.default_main_program(), feed=data)
        else:
            for i in range(self.epoch_num):
                try:
                    exe.train_from_dataset(fluid.default_main_program(),
                                           dataset)
                except Exception as e:
                    self.assertTrue(False)
740

741
        temp_dir.cleanup()
742

D
danleifeng 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
    def test_run_with_inmemory_dataset_train_debug_mode(self):
        """
        Testcase for InMemoryDataset from create to run.
        """

        temp_dir = tempfile.TemporaryDirectory()
        dump_a_path = os.path.join(temp_dir.name, 'test_run_with_dump_a.txt')
        dump_b_path = os.path.join(temp_dir.name, 'test_run_with_dump_b.txt')

        with open(dump_a_path, "w") as f:
            data = "1 a 1 a 1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 b 1 b 1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 c 1 c 1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
        with open(dump_b_path, "w") as f:
            data = "1 d 1 d 1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 e 1 e 1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 f 1 f 1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 g 1 g 1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        for slot in slots:
            var = fluid.layers.data(name=slot,
                                    shape=[1],
                                    dtype="int64",
                                    lod_level=1)
            slots_vars.append(var)

        dataset = paddle.distributed.InMemoryDataset()
        dataset.init(batch_size=32,
                     thread_num=1,
                     pipe_command="cat",
                     data_feed_type="SlotRecordInMemoryDataFeed",
                     use_var=slots_vars)
        dataset._init_distributed_settings(parse_ins_id=True,
                                           parse_content=True,
                                           fea_eval=True,
                                           candidate_size=10000)
        dataset.set_filelist([dump_a_path, dump_b_path])
        dataset.load_into_memory()

        paddle.enable_static()

        exe = paddle.static.Executor(paddle.CPUPlace())
        startup_program = paddle.static.Program()
        main_program = paddle.static.Program()
        exe.run(startup_program)
        for i in range(2):
            try:
                exe.train_from_dataset(main_program, dataset, debug=True)
            except ImportError as e:
                pass
            except Exception as e:
                self.assertTrue(False)

        temp_dir.cleanup()

X
xjqbest 已提交
802

Z
Zeng Jinle 已提交
803
class TestDatasetWithDataLoader(TestDataset):
X
xujiaqi01 已提交
804 805 806 807
    """
    Test Dataset With Data Loader class. TestCases.
    """

Z
Zeng Jinle 已提交
808
    def setUp(self):
X
xujiaqi01 已提交
809 810 811
        """
        Test Dataset With Data Loader, setUp.
        """
Z
Zeng Jinle 已提交
812 813 814 815 816
        self.use_data_loader = True
        self.epoch_num = 10
        self.drop_last = False


817
class TestDatasetWithFetchHandler(unittest.TestCase):
X
xujiaqi01 已提交
818 819 820 821
    """
    Test Dataset With Fetch Handler. TestCases.
    """

822
    def net(self):
X
xujiaqi01 已提交
823 824 825
        """
        Test Dataset With Fetch Handler. TestCases.
        """
826 827 828 829
        slots = ["slot1", "slot2", "slot3", "slot4"]
        slots_vars = []
        poolings = []
        for slot in slots:
830 831 832 833
            data = fluid.layers.data(name=slot,
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
834 835 836 837 838 839 840 841 842 843 844
            var = fluid.layers.cast(x=data, dtype='float32')
            pool = fluid.layers.sequence_pool(input=var, pool_type='AVERAGE')

            slots_vars.append(data)
            poolings.append(pool)

        concated = fluid.layers.concat(poolings, axis=1)
        fc = fluid.layers.fc(input=concated, act='tanh', size=32)
        return slots_vars, fc

    def get_dataset(self, inputs, files):
X
xujiaqi01 已提交
845 846 847 848 849 850 851
        """
        Test Dataset With Fetch Handler. TestCases.

        Args:
            inputs(list): inputs of get_dataset
            files(list): files of  get_dataset
        """
852
        dataset = paddle.distributed.QueueDataset()
853 854 855 856
        dataset.init(batch_size=32,
                     thread_num=3,
                     pipe_command="cat",
                     use_var=inputs)
857 858 859 860
        dataset.set_filelist(files)
        return dataset

    def setUp(self):
X
xujiaqi01 已提交
861 862 863
        """
        Test Dataset With Fetch Handler. TestCases.
        """
864 865 866 867 868 869 870
        self.temp_dir = tempfile.TemporaryDirectory()
        self.filename1 = os.path.join(self.temp_dir.name,
                                      "test_queue_dataset_run_a.txt")
        self.filename2 = os.path.join(self.temp_dir.name,
                                      "test_queue_dataset_run_b.txt")

        with open(self.filename1, "w") as f:
871 872 873 874
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
875
        with open(self.filename2, "w") as f:
876 877 878 879 880 881 882
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

    def tearDown(self):
X
xujiaqi01 已提交
883 884 885
        """
        Test Dataset With Fetch Handler. TestCases.
        """
886
        self.temp_dir.cleanup()
887 888

    def test_dataset_none(self):
X
xujiaqi01 已提交
889 890 891
        """
        Test Dataset With Fetch Handler. TestCases.
        """
892
        slots_vars, out = self.net()
893
        files = [self.filename1, self.filename2]
894 895 896 897 898 899 900 901 902 903 904 905
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        # test dataset->None
        try:
            exe.train_from_dataset(fluid.default_main_program(), None)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
906
            self.assertEqual(error_msg, str(e))
907 908 909 910
        except Exception as e:
            self.assertTrue(False)

    def test_infer_from_dataset(self):
X
xujiaqi01 已提交
911 912 913
        """
        Test Dataset With Fetch Handler. TestCases.
        """
914
        slots_vars, out = self.net()
915
        files = [self.filename1, self.filename2]
916 917 918 919 920 921 922 923 924 925 926 927
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        try:
            exe.infer_from_dataset(fluid.default_main_program(), dataset)
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except Exception as e:
            self.assertTrue(False)

928 929 930 931 932
    def test_fetch_handler(self):
        """
        Test Dataset With Fetch Handler. TestCases.
        """
        slots_vars, out = self.net()
933
        files = [self.filename1, self.filename2]
934 935 936 937 938 939 940 941 942
        dataset = self.get_dataset(slots_vars, files)

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        fh = fluid.executor.FetchHandler(out.name)
        fh.help()

        try:
943 944 945
            exe.train_from_dataset(program=fluid.default_main_program(),
                                   dataset=dataset,
                                   fetch_handler=fh)
946 947 948 949
        except ImportError as e:
            print("warning: we skip trainer_desc_pb2 import problem in windows")
        except RuntimeError as e:
            error_msg = "dataset is need and should be initialized"
950
            self.assertEqual(error_msg, str(e))
951 952 953
        except Exception as e:
            self.assertTrue(False)

954

X
xujiaqi01 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967
class TestDataset2(unittest.TestCase):
    """  TestCases for Dataset. """

    def setUp(self):
        """  TestCases for Dataset. """
        self.use_data_loader = False
        self.epoch_num = 10
        self.drop_last = False

    def test_dataset_fleet(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
968 969 970 971 972
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset2_run_a.txt")
        filename2 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset2_run_b.txt")
973 974 975

        self.skipTest("parameter server will add pslib UT later")

976
        with open(filename1, "w") as f:
X
xujiaqi01 已提交
977 978 979 980
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
981
        with open(filename2, "w") as f:
X
xujiaqi01 已提交
982 983 984 985 986 987 988 989 990
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
991
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
X
xujiaqi01 已提交
992 993 994 995 996 997 998 999 1000
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
1001
            fake_cost = paddle.mean(fake_cost)
X
xujiaqi01 已提交
1002 1003 1004 1005
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
1006
                fleet.init()
X
xujiaqi01 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
                adam = fleet.distributed_optimizer(adam)
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
1018 1019
            dataset = paddle.distributed.InMemoryDataset()

1020 1021 1022 1023
            dataset.init(batch_size=32,
                         thread_num=3,
                         pipe_command="cat",
                         use_var=slots_vars)
1024
            dataset.set_filelist([filename1, filename2])
X
xujiaqi01 已提交
1025 1026 1027 1028
            dataset.load_into_memory()
            fleet._opt_info = None
            fleet._fleet_ptr = None

1029
        temp_dir.cleanup()
X
xujiaqi01 已提交
1030 1031 1032 1033 1034

    def test_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
1035 1036 1037 1038 1039 1040 1041
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset2_run2_a.txt")
        filename2 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset2_run2_b.txt")

        with open(filename1, "w") as f:
X
xujiaqi01 已提交
1042 1043 1044 1045
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
1046
        with open(filename2, "w") as f:
X
xujiaqi01 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
1056
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
X
xujiaqi01 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
1066
            fake_cost = paddle.mean(fake_cost)
X
xujiaqi01 已提交
1067 1068 1069 1070
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
X
xujiaqi01 已提交
1071
                fleet.init()
X
xujiaqi01 已提交
1072 1073 1074 1075
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
                adam = fleet.distributed_optimizer(adam,
                                                   strategy={
                                                       "fs_uri":
                                                       "fs_uri_xxx",
                                                       "fs_user":
                                                       "fs_user_xxx",
                                                       "fs_passwd":
                                                       "fs_passwd_xxx",
                                                       "fs_hadoop_bin":
                                                       "fs_hadoop_bin_xxx"
                                                   })
X
xujiaqi01 已提交
1087 1088 1089 1090 1091 1092
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
1093
            dataset = paddle.distributed.InMemoryDataset()
1094 1095 1096 1097
            dataset.init(batch_size=32,
                         thread_num=3,
                         pipe_command="cat",
                         use_var=slots_vars)
1098
            dataset.set_filelist([filename1, filename2])
X
xujiaqi01 已提交
1099
            dataset.load_into_memory()
X
xujiaqi01 已提交
1100 1101 1102 1103
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
1104 1105
            fleet._opt_info = None
            fleet._fleet_ptr = None
1106 1107
            dataset = paddle.distributed.InMemoryDataset()
            dataset.init(fs_name="", fs_ugi="")
1108
            d = paddle.distributed.fleet.DatasetBase()
1109
            try:
1110
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
1130
            dataset._set_fleet_send_batch_size(1024)
1131 1132 1133 1134
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1135
            #dataset.get_pv_data_size()
1136 1137
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()
1138
            dataset = paddle.distributed.QueueDataset()
1139 1140 1141 1142 1143 1144 1145 1146
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
1147
            dataset = paddle.distributed.fleet.FileInstantDataset()
1148 1149 1150 1151 1152 1153 1154 1155
            try:
                dataset.local_shuffle()
            except:
                print("warning: catch expected error")
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
X
xujiaqi01 已提交
1156

1157
        temp_dir.cleanup()
X
xujiaqi01 已提交
1158

1159 1160 1161 1162
    def test_bosps_dataset_fleet2(self):
        """
        Testcase for InMemoryDataset from create to run.
        """
1163 1164 1165 1166 1167 1168 1169
        temp_dir = tempfile.TemporaryDirectory()
        filename1 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset2_run2_a.txt")
        filename2 = os.path.join(temp_dir.name,
                                 "test_in_memory_dataset2_run2_b.txt")

        with open(filename1, "w") as f:
1170 1171 1172 1173
            data = "1 1 2 3 3 4 5 5 5 5 1 1\n"
            data += "1 2 2 3 4 4 6 6 6 6 1 2\n"
            data += "1 3 2 3 5 4 7 7 7 7 1 3\n"
            f.write(data)
1174
        with open(filename2, "w") as f:
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
            data = "1 4 2 3 3 4 5 5 5 5 1 4\n"
            data += "1 5 2 3 4 4 6 6 6 6 1 5\n"
            data += "1 6 2 3 5 4 7 7 7 7 1 6\n"
            data += "1 7 2 3 6 4 8 8 8 8 1 7\n"
            f.write(data)

        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        with fluid.program_guard(train_program, startup_program):
            slots = ["slot1_ff", "slot2_ff", "slot3_ff", "slot4_ff"]
            slots_vars = []
            for slot in slots:
                var = fluid.layers.data(\
                    name=slot, shape=[1], dtype="float32", lod_level=1)
                slots_vars.append(var)
            fake_cost = \
                fluid.layers.elementwise_sub(slots_vars[0], slots_vars[-1])
1194
            fake_cost = paddle.mean(fake_cost)
1195 1196 1197 1198 1199 1200 1201 1202 1203
        with fluid.scope_guard(scope):
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            try:
                fleet.init()
            except ImportError as e:
                print("warning: no mpi4py")
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            try:
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
                adam = fleet.distributed_optimizer(adam,
                                                   strategy={
                                                       "fs_uri":
                                                       "fs_uri_xxx",
                                                       "fs_user":
                                                       "fs_user_xxx",
                                                       "fs_passwd":
                                                       "fs_passwd_xxx",
                                                       "fs_hadoop_bin":
                                                       "fs_hadoop_bin_xxx"
                                                   })
1215 1216 1217 1218 1219 1220 1221
                adam.minimize([fake_cost], [scope])
            except AttributeError as e:
                print("warning: no mpi")
            except ImportError as e:
                print("warning: no mpi4py")
            exe.run(startup_program)
            dataset = paddle.distributed.fleet.BoxPSDataset()
1222 1223 1224 1225
            dataset.init(batch_size=32,
                         thread_num=3,
                         pipe_command="cat",
                         use_var=slots_vars)
1226
            dataset.set_filelist([filename1, filename2])
1227 1228 1229 1230 1231 1232 1233 1234
            dataset.load_into_memory()
            try:
                dataset.global_shuffle(fleet)
            except:
                print("warning: catch expected error")
            fleet._opt_info = None
            fleet._fleet_ptr = None
            dataset = paddle.distributed.fleet.BoxPSDataset()
1235 1236 1237 1238 1239 1240 1241 1242
            dataset.init(rank_offset="",
                         pv_batch_size=1,
                         fs_name="",
                         fs_ugi="",
                         data_feed_type="MultiSlotInMemoryDataFeed",
                         parse_logkey=True,
                         merge_by_sid=True,
                         enable_pv_merge=True)
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
            d = paddle.distributed.fleet.DatasetBase()
            try:
                dataset._set_feed_type("MultiSlotInMemoryDataFeed")
            except:
                print("warning: catch expected error")
            dataset.thread_num = 0
            try:
                dataset._prepare_to_run()
            except:
                print("warning: catch expected error")
            dataset._set_parse_logkey(True)
            dataset._set_merge_by_sid(True)
            dataset._set_enable_pv_merge(True)
            try:
                dataset.preprocess_instance()
            except:
                print("warning: catch expected error")
            try:
                dataset.set_current_phase(1)
            except:
                print("warning: catch expected error")
            try:
                dataset.postprocess_instance()
            except:
                print("warning: catch expected error")
            dataset._set_fleet_send_batch_size(1024)
            try:
                dataset.global_shuffle()
            except:
                print("warning: catch expected error")
            #dataset.get_pv_data_size()
            dataset.get_memory_data_size()
            dataset.get_shuffle_data_size()
1276
        temp_dir.cleanup()
1277

X
xujiaqi01 已提交
1278

X
xjqbest 已提交
1279
if __name__ == '__main__':
X
xjqbest 已提交
1280
    unittest.main()