test_concat_op.py 20.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
18
import paddle.fluid as fluid
19
from paddle.fluid import Program, core, program_guard
20
from paddle.fluid.framework import _test_eager_guard
21
import paddle
22 23 24
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
25 26


27
class TestConcatOp(OpTest):
28

29
    def setUp(self):
30
        self.op_type = "concat"
31
        self.python_api = paddle.concat
32
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
33 34 35
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
36 37 38 39 40 41
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
42
        self.outputs = {
43 44
            'Out':
            np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
45
        }
46

47
    def get_dtype(self):
48
        return "float64"
49

50
    def test_check_output(self):
51 52 53 54
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
55
            self.check_output(check_eager=True)
56

57
    def test_check_grad(self):
58 59 60 61 62 63
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(place, ['x0'], 'Out')
            self.check_grad_with_place(place, ['x1'], 'Out')
            self.check_grad_with_place(place, ['x2'], 'Out')
        else:
64 65 66
            self.check_grad(['x0'], 'Out', check_eager=True)
            self.check_grad(['x1'], 'Out', check_eager=True)
            self.check_grad(['x2'], 'Out', check_eager=True)
C
chengduoZH 已提交
67 68

    def init_test_data(self):
69 70 71 72 73 74 75 76 77 78 79
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
80 81 82
        self.axis = 1


83
class TestConcatOp2(TestConcatOp):
84

C
chengduoZH 已提交
85
    def init_test_data(self):
86 87 88
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
89
        self.axis = 1
90

91

92 93
@skip_check_grad_ci(
    reason="The function 'check_grad' for large inputs is too slow.")
94
class TestConcatOp3(TestConcatOp):
95

96
    def init_test_data(self):
97 98 99
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
100 101 102 103 104 105
        self.axis = 1

    def test_check_grad(self):
        pass


106
@skip_check_grad_ci(
107 108
    reason=
    "This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
109
)
110
class TestConcatOp4(TestConcatOp):
111

112
    def init_test_data(self):
113 114 115
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
116 117 118 119 120 121
        self.axis = 0

    def test_check_grad(self):
        pass


122
class TestConcatOp5(TestConcatOp):
123

124
    def init_test_data(self):
Z
zhupengyang 已提交
125 126 127
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
128 129 130
        self.axis = -3


131
class TestConcatOp6(TestConcatOp):
132

133 134 135
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
136
        self.python_api = paddle.concat
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
            'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)),
                  ('x2', (self.x2, self.lod))]
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
154
        self.check_output(check_eager=True)
155 156

    def test_check_grad(self):
157 158 159
        self.check_grad(['x0'], 'Out', check_eager=True)
        self.check_grad(['x1'], 'Out', check_eager=True)
        self.check_grad(['x2'], 'Out', check_eager=True)
160 161 162 163 164 165 166 167

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


168
def create_test_AxisTensor(parent):
169

170
    class TestConcatAxisTensor(parent):
171

172 173
        def setUp(self):
            self.op_type = "concat"
174
            self.python_api = paddle.concat
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
                'AxisTensor': np.array([self.axis]).astype("int32")
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
                self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
            else:
                self.actual_axis = self.axis

            self.outputs = {
191 192 193
                'Out':
                np.concatenate((self.x0, self.x1, self.x2),
                               axis=self.actual_axis)
194 195 196 197 198 199 200 201 202 203 204 205
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
206
create_test_AxisTensor(TestConcatOp6)
207

208 209 210 211
#----------------Concat Fp16----------------


def create_test_fp16(parent):
212

213
    class TestConcatFp16(parent):
214

215 216 217 218 219 220 221 222 223 224 225 226 227
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
228
create_test_fp16(TestConcatOp6)
229

230

231 232
#----------------Concat Bf16----------------
def create_test_bf16(parent):
233

234 235 236
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConcatBf16(parent):
237

238 239 240 241 242 243 244 245 246 247 248
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


249
class TestConcatOpError(unittest.TestCase):
250

251 252
    def test_errors(self):
        with program_guard(Program(), Program()):
253 254 255 256
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
257 258 259 260
            x2 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
261
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
262
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
263 264 265 266 267
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
268
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
269
            fluid.layers.concat([x6, x7])
270

271 272 273 274 275 276
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

277 278 279 280 281
            def test_input_same_dtype():
                fluid.layers.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

282

283
class TestConcatAPI(unittest.TestCase):
284

285
    def test_fluid_api(self):
286
        paddle.enable_static()
287 288 289 290 291 292 293
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
294 295
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
296
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
297 298
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
299 300

        exe = fluid.Executor(place=fluid.CPUPlace())
301 302 303 304 305 306 307
        [res_1, res_2, res_3] = exe.run(fluid.default_main_program(),
                                        feed={
                                            "x_1": input_2,
                                            "x_2": input_2,
                                            "x_3": input_3
                                        },
                                        fetch_list=[out_1, out_2, out_3])
308 309
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
310
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
311

312
    def test_api(self):
313
        paddle.enable_static()
314 315 316
        x_1 = paddle.fluid.data(shape=[None, 1, 4, 5],
                                dtype='int32',
                                name='x_1')
317 318 319 320 321 322
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
323 324 325
        positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1)
        negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3)
326 327 328 329 330
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

331
        exe = paddle.static.Executor(place=paddle.CPUPlace())
332 333 334 335 336 337 338 339
        [res_1, res_2, res_3,
         res_4] = exe.run(paddle.static.default_main_program(),
                          feed={
                              "x_1": input_2,
                              "x_2": input_2,
                              "x_3": input_3
                          },
                          fetch_list=[out_1, out_2, out_3, out_4])
340 341 342 343 344 345 346 347 348
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
349
        paddle.disable_static()
Z
Zhou Wei 已提交
350 351 352
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
353 354 355 356 357
        out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
358 359 360
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

361 362 363 364 365 366
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_fluid_api()
            self.test_imperative()

367 368 369
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
370 371 372 373
            x2 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
374 375
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
376 377
            x4 = paddle.fluid.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.fluid.data(shape=[4], dtype='uint8', name='x5')
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])

            # The type of axis in concat_op should be int or Variable.
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

395

396 397 398 399 400 401 402
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
403
        self.python = paddle.concat
404 405 406 407 408 409
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()

410 411 412 413 414 415 416
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
                input = fluid.layers.assign(self.x)
                tensor_array = fluid.layers.create_array(dtype='float32')
417 418 419
                zero = fluid.layers.fill_constant(shape=[1],
                                                  value=0,
                                                  dtype="int64")
420 421 422 423 424 425 426 427 428 429 430 431 432

                for i in range(self.iter_num):
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = fluid.layers.concat(tensor_array, axis=self.axis)
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
                tensor_array = fluid.layers.create_array(
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
433

434 435 436 437 438 439 440 441
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
442

443 444
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
445

446 447
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
448 449 450
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
451 452
        np.testing.assert_array_equal(
            res[0], np.concatenate([self.x] * self.iter_num, axis=self.axis))
453 454


455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
class TestConcatDoubleGradCheck(unittest.TestCase):

    def concat_wrapper(self, x):
        return paddle.concat(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [2, 3], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [2, 3], False, dtype)
        data2.persistable = True
        out = paddle.concat([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
        gradient_checker.double_grad_check([data1, data2],
                                           out,
                                           x_init=[data1_arr, data2_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
            self.concat_wrapper, [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConcatTripleGradCheck(unittest.TestCase):

    def concat_wrapper(self, x):
        return paddle.concat(x, 1)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [2, 3, 4], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [2, 3, 4], False, dtype)
        data2.persistable = True
        out = paddle.concat([data1, data2], 1)
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
        gradient_checker.double_grad_check([data1, data2],
                                           out,
                                           x_init=[data1_arr, data2_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
            self.concat_wrapper, [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


533 534
if __name__ == '__main__':
    unittest.main()