ps_dnn_trainer.py 20.9 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.distributed.fleet.base.role_maker as role_maker
16
from paddle.distributed.ps.utils.ps_program_builder import debug_program, logger, new_pass, ps_log_root_dir
Z
ziyoujiyi 已提交
17 18 19
import paddle.distributed.fleet as fleet
import argparse
import sys
20 21
import yaml
import copy
Z
ziyoujiyi 已提交
22 23 24 25 26
import paddle
import os
import ast
import numpy as np
import struct
27

Z
ziyoujiyi 已提交
28 29 30 31 32 33 34 35 36
sys.path.append("..")
from ps_dnn_model import StaticModel

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))


def is_distributed_env():
    node_role = os.getenv("TRAINING_ROLE")
37
    print("-- Role: {} --".format(node_role))
Z
ziyoujiyi 已提交
38 39 40 41 42 43 44
    if node_role is None:
        return False
    else:
        return True


class YamlHelper(object):
45

Z
ziyoujiyi 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    def load_yaml(self, yaml_file, other_part=None):
        part_list = ["runner", "hyper_parameters"]
        if other_part:
            part_list += other_part
        running_config = self.get_all_inters_from_yaml(yaml_file, part_list)
        running_config = self.workspace_adapter(running_config)
        return running_config

    def print_yaml(self, config):
        print(self.pretty_print_envs(config))

    def parse_yaml(self, config):
        vs = [int(i) for i in yaml.__version__.split(".")]
        if vs[0] < 5:
            use_full_loader = False
        elif vs[0] > 5:
            use_full_loader = True
        else:
            if vs[1] >= 1:
                use_full_loader = True
            else:
                use_full_loader = False

        if os.path.isfile(config):
70 71 72 73 74 75
            with open(config, 'r', encoding="utf-8") as rb:
                if use_full_loader:
                    _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                else:
                    _config = yaml.load(rb.read())
                return _config
Z
ziyoujiyi 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        else:
            raise ValueError("config {} can not be supported".format(config))

    def get_all_inters_from_yaml(self, file, filters):
        _envs = self.parse_yaml(file)
        all_flattens = {}

        def fatten_env_namespace(namespace_nests, local_envs):
            for k, v in local_envs.items():
                if isinstance(v, dict):
                    nests = copy.deepcopy(namespace_nests)
                    nests.append(k)
                    fatten_env_namespace(nests, v)
                else:
                    global_k = ".".join(namespace_nests + [k])
                    all_flattens[global_k] = v

        fatten_env_namespace([], _envs)
        ret = {}
        for k, v in all_flattens.items():
            for f in filters:
                if k.startswith(f):
                    ret[k] = v
        return ret

    def workspace_adapter(self, config):
        workspace = config.get("workspace")
        for k, v in config.items():
            if isinstance(v, str) and "{workspace}" in v:
                config[k] = v.replace("{workspace}", workspace)
        return config

    def pretty_print_envs(self, envs, header=None):
        spacing = 2
        max_k = 40
        max_v = 45

        for k, v in envs.items():
            max_k = max(max_k, len(k))

116 117
        h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
            max_k, " " * spacing, max_v)
Z
ziyoujiyi 已提交
118 119 120 121 122 123 124 125 126 127 128 129
        l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
        length = max_k + max_v + spacing

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = ""
        draws += border + "\n"

        if header:
            draws += h_format.format(header[0], header[1])
        else:
Z
ziyoujiyi 已提交
130
            draws += h_format.format("Ps Benchmark Envs", "Value")
Z
ziyoujiyi 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

        draws += line + "\n"

        for k, v in sorted(envs.items()):
            if isinstance(v, str) and len(v) >= max_v:
                str_v = "... " + v[-41:]
            else:
                str_v = v

            draws += l_format.format(k, " " * spacing, str(str_v))

        draws += border

        _str = "\n{}\n".format(draws)
        return _str


def get_user_defined_strategy(config):
    if not is_distributed_env():
        logger.warn(
            "Not Find Distributed env, Change To local train mode. If you want train with fleet, please use [fleetrun] command."
        )
Z
ziyoujiyi 已提交
153
        #return None
Z
ziyoujiyi 已提交
154 155 156 157 158 159 160 161
    sync_mode = config.get("runner.sync_mode")
    assert sync_mode in ["async", "sync", "geo", "heter", "gpubox"]
    if sync_mode == "sync":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = False
    elif sync_mode == "async":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
162 163 164 165 166 167 168 169
        strategy.is_fl_ps_mode = True if config.get(
            "runner.is_fl_ps_mode") == 1 else False
        if strategy.is_fl_ps_mode == True:
            strategy.pipeline = False
            micro_num = 1
            strategy.pipeline_configs = {
                "accumulate_steps": micro_num
            }  ## num_microbatches
Z
ziyoujiyi 已提交
170 171 172 173 174 175 176 177
    elif sync_mode == "geo":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": config.get("runner.geo_step")}
    elif sync_mode == "heter":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"heter_worker_device_guard": "gpu"}
178 179 180 181
        strategy.pipeline = True
        strategy.pipeline_configs = {
            "accumulate_steps": config.get('runner.micro_num')
        }
Z
ziyoujiyi 已提交
182 183 184 185 186 187 188 189 190 191
    elif sync_mode == "gpubox":
        print("sync_mode = {}".format(sync_mode))
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"use_ps_gpu": 1}

    strategy.trainer_desc_configs = {
        "dump_fields_path": config.get("runner.dump_fields_path", ""),
        "dump_fields": config.get("runner.dump_fields", []),
        "dump_param": config.get("runner.dump_param", []),
192 193 194
        "stat_var_names": config.get("stat_var_names", []),
        "local_sparse": config.get("runner.local_sparse", []),
        "remote_sparse": config.get("runner.remote_sparse", [])
Z
ziyoujiyi 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    }
    print("strategy:", strategy.trainer_desc_configs)

    if config.get("runner.fs_client.uri") is not None:
        strategy.fs_client_param = {
            "uri": config.get("runner.fs_client.uri", ""),
            "user": config.get("runner.fs_client.user", ""),
            "passwd": config.get("runner.fs_client.passwd", ""),
            "hadoop_bin": config.get("runner.fs_client.hadoop_bin", "hadoop")
        }
    print("strategy:", strategy.fs_client_param)

    strategy.adam_d2sum = config.get("hyper_parameters.adam_d2sum", True)
    table_config = {}
    for x in config:
        if x.startswith("table_parameters"):
            table_name = x.split('.')[1]
            if table_name not in table_config:
                table_config[table_name] = {}
            table_config[table_name][x] = config[x]
    print("table_config:", table_config)
    strategy.sparse_table_configs = table_config
    print("strategy table config:", strategy.sparse_table_configs)
    a_sync_configs = strategy.a_sync_configs
    a_sync_configs["launch_barrier"] = False
220
    # a_sync_configs["launch_barrier"] = True
Z
ziyoujiyi 已提交
221 222 223 224 225 226
    strategy.a_sync_configs = a_sync_configs
    print("launch_barrier: ", strategy.a_sync_configs["launch_barrier"])

    return strategy


227
def get_distributed_strategy(user_defined_strategy):  # pslib
Z
ziyoujiyi 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

    k_steps = user_defined_strategy.a_sync_configs["k_steps"]
    strategy = None

    if not user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_sync_strategy()

    if user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_async_strategy()

    if user_defined_strategy.a_sync and k_steps > 0:
        strategy = StrategyFactory.create_geo_strategy(k_steps)

    if not strategy:
        raise ValueError("k_steps must be invalid value, please check")

    return strategy


def get_model(config):
    abs_dir = config['config_abs_dir']
    sys.path.append(abs_dir)
    static_model = StaticModel(config)
    return static_model


def parse_args():
    parser = argparse.ArgumentParser("PsTest train script")
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    parser.add_argument('-m',
                        '--config_yaml',
                        type=str,
                        required=True,
                        help='config file path')
    parser.add_argument('-bf16',
                        '--pure_bf16',
                        type=ast.literal_eval,
                        default=False,
                        help="whether use bf16")

    parser.add_argument('--run_minimize',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--run_single_pass',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--run_the_one_ps',
                        type=int,
                        default=0,
                        help="test the_one_ps")
    parser.add_argument('--debug_new_minimize',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--debug_new_pass',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--applied_pass_name',
                        type=str,
                        default="",
                        help="test single pass")
    parser.add_argument('--debug_the_one_ps',
                        type=int,
                        default=0,
                        help="test the_one_ps")
Z
ziyoujiyi 已提交
296 297 298 299 300 301 302 303 304 305

    args = parser.parse_args()
    args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
    yaml_helper = YamlHelper()
    config = yaml_helper.load_yaml(args.config_yaml)
    config["yaml_path"] = args.config_yaml
    config["config_abs_dir"] = args.abs_dir
    config["pure_bf16"] = args.pure_bf16
    config['run_minimize'] = args.run_minimize
    config['run_single_pass'] = args.run_single_pass
Z
ziyoujiyi 已提交
306
    config['run_the_one_ps'] = args.run_the_one_ps
Z
ziyoujiyi 已提交
307 308 309
    config['debug_new_minimize'] = args.debug_new_minimize
    config['debug_new_pass'] = args.debug_new_pass
    config['applied_pass_name'] = args.applied_pass_name
Z
ziyoujiyi 已提交
310
    config['debug_the_one_ps'] = args.debug_the_one_ps
Z
ziyoujiyi 已提交
311 312 313 314 315 316 317 318 319
    yaml_helper.print_yaml(config)
    return config


def bf16_to_fp32(val):
    return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])


class DnnTrainer(object):
320

Z
ziyoujiyi 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    def __init__(self, config):
        self.metrics = {}
        self.config = config
        self.input_data = None
        self.reader = None
        self.exe = None
        self.train_result_dict = {}
        self.train_result_dict["speed"] = []
        self.model = None
        self.pure_bf16 = self.config['pure_bf16']
        self.role_maker = role_maker.PaddleCloudRoleMaker()

    def init_fleet_with_gloo(self, use_gloo=False):
        if use_gloo:
            os.environ["PADDLE_WITH_GLOO"] = "1"
            fleet.init(self.role_maker)
        else:
            fleet.init()

        if fleet.is_server():
341
            print("server: {} started".format(fleet.server_index()))
Z
ziyoujiyi 已提交
342
        else:
343
            print("worker: {} started".format(fleet.worker_index()))
Z
ziyoujiyi 已提交
344 345 346 347

    def run_minimize(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
348
        print("cpu_num: {}".format(os.getenv("CPU_NUM")))
Z
ziyoujiyi 已提交
349 350 351 352 353 354
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
355
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
356 357
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

358
        self.role_maker._generate_role()  # 必要
Z
ziyoujiyi 已提交
359
        if self.config['debug_new_minimize'] == 1:
360
            print("entering run_minimize -- new")
Z
ziyoujiyi 已提交
361 362 363 364 365 366
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)
        else:
367
            print("entering run_minimize -- old")
Z
ziyoujiyi 已提交
368 369 370 371 372
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  ## Fleet 对象
            fleet_obj.minimize(loss)

        if fleet.is_server():
Z
ziyoujiyi 已提交
373
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
374
                self.config['debug_new_minimize']) + '_server_main.prototxt'
375
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
376
        elif fleet.is_worker():
Z
ziyoujiyi 已提交
377
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
378
                self.config['debug_new_minimize']) + '_worker_main.prototxt'
379 380
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
Z
ziyoujiyi 已提交
381
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
382 383
                self.config['debug_new_minimize']
            ) + '_heter_worker_main.prototxt'
384
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
385 386 387 388 389 390 391 392 393

    def run_single_pass(self):
        self.init_fleet_with_gloo()
        self.model = get_model(config)
        input_data = self.model.create_feeds()
        metrics = self.model.net(input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(config)
        learning_rate = config.get("hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
394
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
395 396 397 398
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)
        startup_program = paddle.static.default_startup_program()
        inner_optimizer.minimize(loss, startup_program)
        if self.config['debug_new_pass'] == 1:
399
            print("entering run {} - new".format(
Z
ziyoujiyi 已提交
400
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
401 402 403 404
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
405
            ps_optimizer._set_origin_programs([loss])
Z
ziyoujiyi 已提交
406
            ps_optimizer._init_ps_pass_context(loss, startup_program)
Z
ziyoujiyi 已提交
407
            _main = ps_optimizer.pass_ctx._attrs['cloned_main']
Z
ziyoujiyi 已提交
408 409

            append_send_ops_pass = new_pass(config["applied_pass_name"],
Z
ziyoujiyi 已提交
410
                                            ps_optimizer.pass_ctx._attrs)
Z
ziyoujiyi 已提交
411 412
            append_send_ops_pass.apply([_main], [None], ps_optimizer.pass_ctx)
        else:
413
            print("entering run {} - old".format(
Z
ziyoujiyi 已提交
414
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
415 416 417 418 419 420 421 422 423 424 425 426
            from paddle.fluid.incubate.fleet.parameter_server.ir import public as public
            dist_strategy = get_distributed_strategy(user_defined_strategy)
            compiled_config = public.CompileTimeStrategy(
                loss.block.program, startup_program, dist_strategy,
                self.role_maker)

            _main = compiled_config.origin_main_program.clone()
            _startup = compiled_config.origin_startup_program.clone()
            from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker
            _main = worker.append_send_ops_pass(_main, compiled_config)

        if fleet.is_server():
427 428 429
            _main_file = ps_log_root_dir + sync_mode + "_" + str(
                config["applied_pass_name"]) + '_debug:_' + str(
                    self.config['debug_new_pass']) + '_server_main.prototxt'
430
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
431
        elif fleet.is_worker():
432 433 434
            _main_file = ps_log_root_dir + sync_mode + "_" + str(
                config["applied_pass_name"]) + '_debug:_' + str(
                    self.config['debug_new_pass']) + '_worker_main.prototxt'
435
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
436

Z
ziyoujiyi 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450
    def run_the_one_ps(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
        sync_mode = self.config.get("runner.sync_mode")
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

        self.role_maker._generate_role()  # 必要
        if self.config['debug_the_one_ps'] == 1:
451
            print("entering run_the_one_ps -- new")
Z
ziyoujiyi 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464

            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)

            from paddle.distributed.ps.the_one_ps import TheOnePSRuntime
            _runtime_handle = TheOnePSRuntime()  # ps 目录下重构版的 TheOnePSRuntime
            _runtime_handle._set_basic_info(ps_optimizer.pass_ctx._attrs)
            if fleet.is_worker():
                worker_desc = _runtime_handle.ps_desc_builder.build_worker_desc(
                )
465 466 467
                with open(
                        ps_log_root_dir + sync_mode + '_' +
                        'new_worker_ps_desc', 'w') as f:
Z
ziyoujiyi 已提交
468 469 470 471
                    f.write(worker_desc)
            if fleet.is_server():
                server_desc = _runtime_handle.ps_desc_builder.build_server_desc(
                )
472 473 474
                with open(
                        ps_log_root_dir + sync_mode + '_' +
                        'new_server_ps_desc', 'w') as f:
Z
ziyoujiyi 已提交
475 476 477 478
                    f.write(server_desc)

        else:
            pass
479
        '''
480
            print("entering run_the_one_ps -- old")
Z
ziyoujiyi 已提交
481
            fleet_obj = fleet.distributed_optimizer(
482 483
                inner_optimizer, user_defined_strategy)
            fleet_obj.minimize(loss)
Z
ziyoujiyi 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
            if fleet.is_worker():
                worker_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=False, is_sync=False)
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'worker_ps_desc', 'w') as f:
                    f.write(str(worker_desc) + str(server_desc))
            if fleet.is_server():
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'server_ps_desc', 'w') as f:
                    f.write(str(server_desc) + str(fleet_obj._runtime_handle._get_fs_client_desc().to_string()))
        '''
        if fleet.is_server():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_server_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif fleet.is_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_heter_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)

Z
ziyoujiyi 已提交
507 508 509 510

if __name__ == "__main__":
    paddle.enable_static()
    config = parse_args()
511
    print(">>>>>>>>>> python process started")
Z
ziyoujiyi 已提交
512 513 514 515 516 517
    os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
    benchmark_main = DnnTrainer(config)
    if config['run_single_pass'] == 1:
        benchmark_main.run_single_pass()
    elif config['run_minimize'] == 1:
        benchmark_main.run_minimize()
Z
ziyoujiyi 已提交
518 519
    elif config['run_the_one_ps'] == 1:
        benchmark_main.run_the_one_ps()