dist_se_resnext.py 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import paddle
import paddle.fluid as fluid
T
typhoonzero 已提交
19
from test_dist_base import TestDistRunnerBase, runtime_main
20

P
pangyoki 已提交
21 22
paddle.enable_static()

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class SE_ResNeXt():
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def __init__(self, layers=50):
        self.params = train_parameters
        self.layers = layers

    def net(self, input, class_dim=1000):
        layers = self.layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)
        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]

56 57 58 59 60 61 62 63 64 65
            conv = self.conv_bn_layer(input=input,
                                      num_filters=64,
                                      filter_size=7,
                                      stride=2,
                                      act='relu')
            conv = fluid.layers.pool2d(input=conv,
                                       pool_size=3,
                                       pool_stride=2,
                                       pool_padding=1,
                                       pool_type='max')
66 67 68 69 70 71
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]

72 73 74 75 76 77 78 79 80 81
            conv = self.conv_bn_layer(input=input,
                                      num_filters=64,
                                      filter_size=7,
                                      stride=2,
                                      act='relu')
            conv = fluid.layers.pool2d(input=conv,
                                       pool_size=3,
                                       pool_stride=2,
                                       pool_padding=1,
                                       pool_type='max')
82 83 84 85 86 87
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
            conv = self.conv_bn_layer(input=input,
                                      num_filters=64,
                                      filter_size=3,
                                      stride=2,
                                      act='relu')
            conv = self.conv_bn_layer(input=conv,
                                      num_filters=64,
                                      filter_size=3,
                                      stride=1,
                                      act='relu')
            conv = self.conv_bn_layer(input=conv,
                                      num_filters=128,
                                      filter_size=3,
                                      stride=1,
                                      act='relu')
103 104 105 106 107 108 109 110 111 112 113 114 115
            conv = fluid.layers.pool2d(
                input=conv, pool_size=3, pool_stride=2, pool_padding=1, \
                pool_type='max')

        for block in range(len(depth)):
            for i in range(depth[block]):
                conv = self.bottleneck_block(
                    input=conv,
                    num_filters=num_filters[block],
                    stride=2 if i == 0 and block != 0 else 1,
                    cardinality=cardinality,
                    reduction_ratio=reduction_ratio)

116 117 118 119
        pool = fluid.layers.pool2d(input=conv,
                                   pool_size=7,
                                   pool_type='avg',
                                   global_pooling=True)
120 121
        drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
        stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
W
Wu Yi 已提交
122 123 124 125
        out = fluid.layers.fc(
            input=drop,
            size=class_dim,
            act='softmax',
126 127
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.05)))
128 129 130 131 132 133 134 135 136 137 138 139
        return out

    def shortcut(self, input, ch_out, stride):
        ch_in = input.shape[1]
        if ch_in != ch_out or stride != 1:
            filter_size = 1
            return self.conv_bn_layer(input, ch_out, filter_size, stride)
        else:
            return input

    def bottleneck_block(self, input, num_filters, stride, cardinality,
                         reduction_ratio):
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        conv0 = self.conv_bn_layer(input=input,
                                   num_filters=num_filters,
                                   filter_size=1,
                                   act='relu')
        conv1 = self.conv_bn_layer(input=conv0,
                                   num_filters=num_filters,
                                   filter_size=3,
                                   stride=stride,
                                   groups=cardinality,
                                   act='relu')
        conv2 = self.conv_bn_layer(input=conv1,
                                   num_filters=num_filters * 2,
                                   filter_size=1,
                                   act=None)
        scale = self.squeeze_excitation(input=conv2,
                                        num_channels=num_filters * 2,
                                        reduction_ratio=reduction_ratio)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

        short = self.shortcut(input, num_filters * 2, stride)

        return fluid.layers.elementwise_add(x=short, y=scale, act='relu')

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
M
minqiyang 已提交
174
            padding=(filter_size - 1) // 2,
175 176
            groups=groups,
            act=None,
W
Wu Yi 已提交
177
            # avoid pserver CPU init differs from GPU
178 179
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.05)),
180 181 182 183
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def squeeze_excitation(self, input, num_channels, reduction_ratio):
184 185 186 187
        pool = fluid.layers.pool2d(input=input,
                                   pool_size=0,
                                   pool_type='avg',
                                   global_pooling=True)
188
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
W
Wu Yi 已提交
189 190 191
        squeeze = fluid.layers.fc(
            input=pool,
            size=num_channels // reduction_ratio,
192 193
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.05)),
W
Wu Yi 已提交
194
            act='relu')
195
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
W
Wu Yi 已提交
196 197 198
        excitation = fluid.layers.fc(
            input=squeeze,
            size=num_channels,
199 200
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
                value=0.05)),
W
Wu Yi 已提交
201
            act='sigmoid')
202 203 204 205
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale


T
typhoonzero 已提交
206
class DistSeResneXt2x2(TestDistRunnerBase):
207

208
    def get_model(self, batch_size=2, use_dgc=False):
T
typhoonzero 已提交
209
        # Input data
210 211 212
        image = fluid.layers.data(name="data",
                                  shape=[3, 224, 224],
                                  dtype='float32')
T
typhoonzero 已提交
213
        label = fluid.layers.data(name="int64", shape=[1], dtype='int64')
214

T
typhoonzero 已提交
215 216 217 218
        # Train program
        model = SE_ResNeXt(layers=50)
        out = model.net(input=image, class_dim=102)
        cost = fluid.layers.cross_entropy(input=out, label=label)
219

220
        avg_cost = paddle.mean(x=cost)
T
typhoonzero 已提交
221 222
        acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
223

T
typhoonzero 已提交
224 225
        # Evaluator
        test_program = fluid.default_main_program().clone(for_test=True)
226

T
typhoonzero 已提交
227 228 229 230
        # Optimization
        total_images = 6149  # flowers
        epochs = [30, 60, 90]
        step = int(total_images / batch_size + 1)
231

T
typhoonzero 已提交
232 233 234
        bd = [step * e for e in epochs]
        base_lr = 0.1
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
235

236 237
        if not use_dgc:
            optimizer = fluid.optimizer.Momentum(
238 239
                learning_rate=fluid.layers.piecewise_decay(boundaries=bd,
                                                           values=lr),
240 241 242 243
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
        else:
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
244 245
                learning_rate=fluid.layers.piecewise_decay(boundaries=bd,
                                                           values=lr),
246 247 248
                momentum=0.9,
                rampup_begin_step=0,
                regularization=fluid.regularizer.L2Decay(1e-4))
T
typhoonzero 已提交
249
        optimizer.minimize(avg_cost)
250

T
typhoonzero 已提交
251
        # Reader
252 253 254 255
        train_reader = paddle.batch(paddle.dataset.flowers.test(use_xmap=False),
                                    batch_size=batch_size)
        test_reader = paddle.batch(paddle.dataset.flowers.test(use_xmap=False),
                                   batch_size=batch_size)
256

T
typhoonzero 已提交
257
        return test_program, avg_cost, train_reader, test_reader, acc_top1, out
258 259 260


if __name__ == "__main__":
T
typhoonzero 已提交
261
    runtime_main(DistSeResneXt2x2)