dist_reshape.py 28.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
from .common import DistributedOperatorImplContainer
16
from .common import DistributedOperatorImpl
17
from .common import register_distributed_operator_impl_container
C
caozhou 已提交
18
from .common import register_distributed_operator_impl, is_parameter_related
19 20
from ..utils import is_dim_shard
from ..utils import compute_compatible_and_update_dim_mapping
21
from ..utils import set_dist_op_desc_original_id
22
from .dist_default import DistributedDefaultImpl0
C
caozhou 已提交
23 24 25 26
from ..cost import build_comp_desc_from_dist_op, build_comp_costs_from_descs
from ..cost import Reshape2OpCost
from ..cost import Reshape2GradOpCost
from paddle.distributed.fleet.meta_optimizers.common import OpRole
27 28


29
class DistributedReshape2(DistributedOperatorImplContainer):
30

31 32
    def __init__(self, op_type):
        super(DistributedReshape2, self).__init__(op_type)
33 34


35
register_distributed_operator_impl_container(DistributedReshape2("reshape2"))
36 37 38


class DistributedReshapeImpl0(DistributedOperatorImpl):
39

40
    def __init__(self, name):
41
        super(DistributedReshapeImpl0, self).__init__(name)
42
        self._forward_implemented = True
43
        self._backward_implemented = False
44

C
caozhou 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        res = []
        op = dist_op.serial_op
        vars = op.block.vars
        dist_attr = dist_op.dist_attr

        shape_list = op.desc.attr("shape")
        # got dist attribute info
        dim_mapping = dist_attr.get_output_dims_mapping(op.output("Out")[0])
        process_mesh_shape = dist_attr.process_mesh.topology

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_attr.process_mesh.processes
        for key in desc_mapping:
            desc_mapping[key]["shape"] = shape_list

        cost_mapping = build_comp_costs_from_descs(Reshape2OpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        return res

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        op_type = dist_op.serial_op.type

        cost_mapping = build_comp_costs_from_descs(Reshape2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        backward_op = dist_op.serial_op
        main_block = backward_op.block
        need_gradient_allreduce = False
        vars = main_block.vars
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and is_parameter_related(
                        varname, main_block):
                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
                        build_dp_costs(res, dist_op, ctx, var_names, attrs,
                                       parallel_axis, cluster)

        return res

123 124 125
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
126 127 128 129 130 131 132 133 134 135
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        return True

136 137 138
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
139 140 141 142 143 144 145 146 147 148 149 150 151
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) - 1:
            return False

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
152
    def is_auto_compatible(self, dist_op):
153 154 155 156
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
157 158 159 160 161 162 163 164 165 166
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

167 168
        for idx, dim_mapping in enumerate(out_dims_mapping[:-1]):
            if x_dims_mapping[idx] != dim_mapping:
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
169 170 171 172 173 174 175 176 177 178
                return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

179
    def update_dims_mapping(self, dist_op):
180
        changed = False
181 182
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(x_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

202 203 204 205 206 207
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

208
        dist_op_context = ctx.dist_op_context
209 210 211
        main_block = dist_op_context.work_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
212
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
213 214 215
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

216
        # check validation of inputs / outputs
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
244
        process_mesh_shape = op_dist_attr.process_mesh.topology
245 246 247 248 249

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
250 251
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]
252 253

        # create op
254
        new_op_desc = main_block.append_op(type='nop').desc
255
        new_op_desc.copy_from(src_op.desc)
256
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
257 258 259 260 261 262 263 264 265
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

    @staticmethod
    def backward(ctx, *args, **kwargs):
266
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
267

268 269

class DistributedReshapeImpl1(DistributedOperatorImpl):
270

271
    def __init__(self, name):
272
        super(DistributedReshapeImpl1, self).__init__(name)
273
        self._forward_implemented = True
274
        self._backward_implemented = False
275

C
caozhou 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        res = []
        op = dist_op.serial_op
        vars = op.block.vars
        dist_attr = dist_op.dist_attr

        shape_list = op.desc.attr("shape")
        # got dist attribute info
        dim_mapping = dist_attr.get_output_dims_mapping(op.output("Out")[0])
        process_mesh_shape = dist_attr.process_mesh.topology

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_attr.process_mesh.processes
        for key in desc_mapping:
            desc_mapping[key]["shape"] = shape_list

        cost_mapping = build_comp_costs_from_descs(Reshape2OpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        return res

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        op_type = dist_op.serial_op.type

        cost_mapping = build_comp_costs_from_descs(Reshape2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        backward_op = dist_op.serial_op
        main_block = backward_op.block
        need_gradient_allreduce = False
        vars = main_block.vars
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and not is_parameter_related(
                        varname, main_block):
                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
                        build_dp_costs(res, dist_op, ctx, var_names, attrs,
                                       parallel_axis, cluster)

        return res

354 355 356
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
357 358 359 360 361 362 363 364 365 366 367 368 369
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        return True

370 371 372
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
373 374 375 376 377 378 379 380 381 382
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping) + 1:
            return False

        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
383
    def is_auto_compatible(self, dist_op):
384 385 386 387
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False

401
        for idx, item in enumerate(x_dims_mapping[:-1]):
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
402 403 404 405 406 407 408 409 410 411 412
            if out_dims_mapping[idx] != item:
                return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != x_dims_mapping[:]:
            return False

        return True

413
    def update_dims_mapping(self, dist_op):
414
        changed = False
415 416
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(out_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(x_dims_mapping)):
            x_shape_dims_mapping[i + 1] = x_dims_mapping[i]

        return changed

436 437 438 439 440 441
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

442
        dist_op_context = ctx.dist_op_context
443 444 445
        main_block = dist_op_context.work_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
446
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
447 448 449
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

450
        # check validation of inputs / outputs
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
478
        process_mesh_shape = op_dist_attr.process_mesh.topology
479 480 481 482 483

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
484 485
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]
486 487

        # create op
488
        new_op_desc = main_block.append_op(type='nop').desc
489
        new_op_desc.copy_from(src_op.desc)
490
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
491 492 493 494 495 496 497 498 499
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

    @staticmethod
    def backward(ctx, *args, **kwargs):
500
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
501

502

503
class DistributedReshapeImpl2(DistributedOperatorImpl):
504

505 506 507 508 509
    def __init__(self, name):
        super(DistributedReshapeImpl2, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = False

C
caozhou 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        else:
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        res = []
        op = dist_op.serial_op
        vars = op.block.vars
        dist_attr = dist_op.dist_attr

        shape_list = op.desc.attr("shape")
        # got dist attribute info
        dim_mapping = dist_attr.get_output_dims_mapping(op.output("Out")[0])
        process_mesh_shape = dist_attr.process_mesh.topology

        # modify target shape
        for idx, axis in enumerate(dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_attr.process_mesh.processes
        for key in desc_mapping:
            desc_mapping[key]["shape"] = shape_list

        cost_mapping = build_comp_costs_from_descs(Reshape2OpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        return res

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        res = []
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        op_type = dist_op.serial_op.type

        cost_mapping = build_comp_costs_from_descs(Reshape2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        backward_op = dist_op.serial_op
        main_block = backward_op.block
        need_gradient_allreduce = False
        vars = main_block.vars
        for input_name in backward_op.desc.input_names():
            for varname in backward_op.desc.input(input_name):
                if "@GRAD" not in varname and not is_parameter_related(
                        varname, main_block):
                    # NOTE input var's dim_mapping of backward op should be the same with input var instead of corresponding varname of forward op
                    var_dim_mapping = dist_attr.get_input_dims_mapping(varname)

                    mesh_shape = process_mesh.topology
                    batch_size_axis = var_dim_mapping[0]
                    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
                        parallel_axis = batch_size_axis
                        attrs = {"use_calc_stream": True}
                        var_names = [varname + "@GRAD"]
                        build_dp_costs(res, dist_op, ctx, var_names, attrs,
                                       parallel_axis, cluster)

        return res

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping):
            return False

        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        x_name = op_desc.input('X')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if len(x_dims_mapping) != len(out_dims_mapping):
            return False

        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for idx, item in enumerate(x_dims_mapping[:-1]):
            if out_dims_mapping[idx] != item:
                return False

        if x_shape_dims_mapping[0] != -1:
            return False

        if x_shape_dims_mapping[1:] != out_dims_mapping[:]:
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        out_name = op_desc.output('Out')[0]
        x_shape_name = op_desc.output('XShape')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping(
            x_shape_name)

        for i in range(len(out_dims_mapping) - 1):
            dim_changed = compute_compatible_and_update_dim_mapping(
                [x_dims_mapping, out_dims_mapping], [i, i])
            if dim_changed:
                changed = True

        for i in range(len(out_dims_mapping)):
            x_shape_dims_mapping[i + 1] = out_dims_mapping[i]

        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        src_op = dist_op_context.cur_src_op
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Out_var = main_block.var(kwargs['Out'][0])
        XShape_var = main_block.var(kwargs['XShape'][0])
        shape_list = src_op.desc.attr("shape")
        ShapeTensor_var_list = []
        for name in kwargs['ShapeTensor']:
            ShapeTensor_var_list.append(name)
        Shape_var_list = []
        for name in kwargs['Shape']:
            Shape_var_list.append(name)

        # got dist attribute info
        out_dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name)
        process_mesh_shape = op_dist_attr.process_mesh.topology

        # modify target shape
        for idx, axis in enumerate(out_dim_mapping):
            if axis >= 0:
                if len(shape_list) > idx:
711 712
                    shape_list[
                        idx] = shape_list[idx] // process_mesh_shape[axis]
713 714

        # create op
715
        new_op_desc = main_block.append_op(type='nop').desc
716 717 718 719 720 721 722 723 724 725 726 727 728 729
        new_op_desc.copy_from(src_op.desc)
        set_dist_op_desc_original_id(new_op_desc, src_op.desc, ctx)
        new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list)
        new_op_desc.set_input('Shape', Shape_var_list)
        new_op_desc.set_input('X', [X_var.name])
        new_op_desc.set_output('XShape', [XShape_var.name])
        new_op_desc.set_output('Out', [Out_var.name])
        new_op_desc._set_attr('shape', shape_list)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)


730 731 732 733
register_distributed_operator_impl("reshape2",
                                   DistributedReshapeImpl0("add_one_dim_back"))
register_distributed_operator_impl(
    "reshape2", DistributedReshapeImpl1("remove_one_dim_back"))
734 735
register_distributed_operator_impl("reshape2",
                                   DistributedReshapeImpl2("same_dim_shape"))