communicator.cc 51.2 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
16

17
#include <google/protobuf/text_format.h>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/distributed/ps/service/brpc_ps_client.h"
21
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
T
tangwei12 已提交
22
#include "paddle/fluid/platform/profiler.h"
23
#include "paddle/fluid/string/string_helper.h"
T
tangwei12 已提交
24

25 26 27
#define LEARNING_RATE_DECAY_COUNTER "@LR_DECAY_COUNTER@"
#define STEP_COUNTER "@PS_STEP_COUNTER@"

T
tangwei12 已提交
28 29 30 31
namespace paddle {
namespace distributed {

using framework::LoDTensor;
32
using phi::SelectedRows;
T
tangwei12 已提交
33

Y
yaoxuefeng 已提交
34 35
const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;

T
tangwei12 已提交
36 37 38 39 40 41 42 43
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

Communicator::Communicator() {}

Z
zhaocaibei123 已提交
44
void Communicator::InitGFlag(const std::string &gflags) {
45
  VLOG(3) << "Init With Gflags:" << gflags;
T
tangwei12 已提交
46 47 48 49 50 51 52 53 54 55 56
  std::vector<std::string> flags = paddle::string::split_string(gflags);
  if (flags.size() < 1) {
    flags.push_back("-max_body_size=314217728");
    flags.push_back("-bthread_concurrency=40");
    flags.push_back("-socket_max_unwritten_bytes=2048000000");
    flags.push_back("-max_connection_pool_size=1950");
  }
  auto it = flags.begin();
  flags.insert(it, "exe default");
  char *flags_ptr[flags.size()];
  for (size_t i = 0; i < flags.size(); ++i) {
57
    flags_ptr[i] = (char *)(flags[i].c_str());  // NOLINT
T
tangwei12 已提交
58 59 60
  }
  int params_cnt = flags.size();
  char **params_ptr = &(flags_ptr[0]);
61
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&params_cnt, &params_ptr, true);
T
tangwei12 已提交
62 63 64 65 66 67 68 69
}

std::once_flag Communicator::init_flag_;
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);

void Communicator::InitBrpcClient(
    const std::string &dist_desc,
    const std::vector<std::string> &host_sign_list) {
70
  auto fleet = paddle::distributed::FleetWrapper::GetInstance();
T
tangwei12 已提交
71
  if (_worker_ptr.get() == nullptr) {
72
    _worker_ptr = fleet->worker_ptr_;
T
tangwei12 已提交
73 74 75 76
  }
  return;
}

Z
zhaocaibei123 已提交
77
std::vector<uint64_t> Communicator::GetClientInfo() {
Z
zhaocaibei123 已提交
78
  std::vector<uint64_t> res = _ps_env.GetClientInfo();
Z
zhaocaibei123 已提交
79 80 81 82 83 84 85 86
  for (auto rr : res) {
    VLOG(2) << "Communicator::GetClientInfo " << rr;
  }
  return res;
}

int Communicator::SetClients(std::vector<uint64_t> &host_sign_list) {
  int node = host_sign_list.size();
Z
zhaocaibei123 已提交
87
  return _ps_env.SetPsClients(host_sign_list.data(), node);
Z
zhaocaibei123 已提交
88 89
}

T
tangwei12 已提交
90 91
void Communicator::RpcRecvDense(const std::vector<std::string> &varnames,
                                int table_id, Scope *scope) {
92 93 94
  platform::RecordEvent record_event("Communicator->RpcRecvDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  std::vector<paddle::distributed::Region> regions;
  regions.reserve(varnames.size());
  for (auto &t : varnames) {
    Variable *var = scope->Var(t);
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      Variable *temp_var = xpu_temp_scope_->Var(t);
      LoDTensor *temp_tensor = temp_var->GetMutable<LoDTensor>();
      temp_tensor->Resize(tensor->dims());
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      paddle::distributed::Region reg(temp_data, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
              << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    } else {
      float *w = tensor->mutable_data<float>(tensor->place());
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
  auto status =
Z
zhaocaibei123 已提交
119
      _worker_ptr->PullDense(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
120 121 122 123 124
  status.wait();

  for (auto &t : varnames) {
    Variable *var = scope->FindVar(t);
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
125
    VLOG(3) << "AsyncCommunicator::RecvNoBarrier Var " << t << " On gpu? "
T
tangwei12 已提交
126
            << platform::is_gpu_place(tensor->place());
Z
zhaocaibei123 已提交
127 128

    float *temp_recv_data = tensor->mutable_data<float>(platform::CPUPlace());
129
    VLOG(3) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
Z
zhaocaibei123 已提交
130 131
            << table_id << " Temp_data[0] " << temp_recv_data[0]
            << " Temp_data[-1] " << temp_recv_data[tensor->numel() - 1];
T
tangwei12 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      LoDTensor *temp_tensor =
          xpu_temp_scope_->FindVar(t)->GetMutable<LoDTensor>();
      framework::TensorCopy(*temp_tensor, tensor->place(), tensor);
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      VLOG(1) << "AsyncCommunicator::RpcRecvDense Var " << t << " table_id "
              << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    }
  }

  return;
}

void Communicator::RpcSendDenseParam(const std::vector<std::string> &varnames,
                                     int table_id, const Scope &scope) {
150 151 152
  platform::RecordEvent record_event("Communicator->RpcSendDenseParam",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto &t : varnames) {
    Variable *var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
      Variable *temp_var = xpu_temp_scope_->Var(t);
      LoDTensor *temp_tensor = temp_var->GetMutable<LoDTensor>();
      temp_tensor->Resize(tensor->dims());
      float *temp_data = temp_tensor->mutable_data<float>(platform::CPUPlace());
      framework::TensorCopy(*tensor, platform::CPUPlace(), temp_tensor);
      paddle::distributed::Region reg(temp_data, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcSendDenseParam Var " << t
              << " table_id " << table_id << " Temp_data[0] " << temp_data[0]
              << " Temp_data[-1] " << temp_data[tensor->numel() - 1];
#endif
    } else {
      float *w = tensor->mutable_data<float>(place);
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
      VLOG(1) << "AsyncCommunicator::RpcSendDenseParam Var " << t
              << " talbe_id " << table_id << " Temp_data[0] " << w[0]
              << " Temp_data[-1] " << w[tensor->numel() - 1];
    }
  }
  auto status =
Z
zhaocaibei123 已提交
182
      _worker_ptr->PushDenseParam(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
183 184 185 186 187 188
  status.wait();
  VLOG(4) << "RPC Send Dense Param " << table_id << " done!";
  return;
}

void Communicator::RpcSendDense(const CommContext &ctx, const Scope &scope) {
189 190 191
  platform::RecordEvent record_event("Communicator->RpcSendDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
192 193 194
  auto &var_names = ctx.origin_varnames;
  auto &table_id = ctx.table_id;
  auto dense_data = std::make_shared<std::vector<float>>();
Z
zhaocaibei123 已提交
195
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
196
  uint32_t num_per_shard =
Z
zhaocaibei123 已提交
197
      DenseDimPerShard(ctx.height_sections[0], request_call_num);
T
tangwei12 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  dense_data->resize(num_per_shard *
                     request_call_num);  // accessor->update_dim() = 1
  float *data = dense_data->data();
  uint32_t pos = 0;
  for (size_t i = 0; i < var_names.size(); ++i) {
    const LoDTensor tensor = scope.FindVar(var_names[i])->Get<LoDTensor>();
    size_t count = static_cast<size_t>(tensor.numel());
    const float *g = tensor.data<float>();
    CHECK(pos + count <= dense_data->size())
        << "invalid dense size, cur pos[" << pos << "]"
        << " data_num[" << count << "] size[" << dense_data->size() << "]";
    memcpy(data + pos, g, count * sizeof(float));
    pos += count;
  }

  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
217
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
218 219 220 221 222 223 224 225 226
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_DENSE_TABLE) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
        --_async_call_num;
      });
Z
zhaocaibei123 已提交
227 228
  auto status = _worker_ptr->PushDenseRawGradient(table_id, data,
                                                  dense_data->size(), closure);
T
tangwei12 已提交
229 230 231 232 233 234
  status.wait();
  return;
}

void Communicator::RpcSendSparseParam(const std::string &varname, int table_id,
                                      const Scope &scope) {
235 236 237
  platform::RecordEvent record_event("Communicator->RpcSendSparseParam",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
238
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  std::vector<float *> push_g_vec;

  auto *send_var = scope.FindVar(varname);
  auto *tensor = send_var->GetMutable<framework::LoDTensor>();
  auto dim = tensor->dims()[1];
  uint64_t sparse_num = static_cast<uint64_t>(tensor->dims()[0]);
  std::vector<uint64_t> sparse_push_keys(sparse_num);
  std::iota(sparse_push_keys.begin(), sparse_push_keys.end(), 0);
  push_g_vec.reserve(sparse_num);

  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * dim);
  }

  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
256
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
257 258 259 260 261 262 263 264
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_SPARSE_PARAM) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
Z
zhaocaibei123 已提交
265 266 267
  auto status = _worker_ptr->PushSparseParam(table_id, sparse_push_keys.data(),
                                             (const float **)push_g_vec.data(),
                                             sparse_push_keys.size(), closure);
T
tangwei12 已提交
268 269 270 271 272 273
  status.wait();
  return;
}

void Communicator::RpcSendSparse(const std::string &var_name, int table_id,
                                 const Scope &scope) {
274 275 276
  platform::RecordEvent record_event("Communicator->RpcSendSparse",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
277
  size_t request_call_num = _worker_ptr->GetServerNums();
T
tangwei12 已提交
278 279 280 281
  std::vector<uint64_t> sparse_push_keys;
  std::vector<float *> push_g_vec;

  auto *send_var = scope.FindVar(var_name);
282
  auto *tensor = send_var->GetMutable<phi::SelectedRows>();
T
tangwei12 已提交
283 284 285
  auto dim = tensor->value().dims()[1];
  std::transform(tensor->rows().begin(), tensor->rows().end(),
                 std::back_inserter(sparse_push_keys),
C
Chengmo 已提交
286
                 [&](int64_t id) { return static_cast<uint64_t>(id); });
T
tangwei12 已提交
287 288 289 290 291

  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->mutable_value()->data<float>() + i * dim);
  }

292 293 294 295 296 297 298 299 300 301 302 303
  // TODO(wangguanqun): padding_idx is not ignored, this is a bug.
  // if padding_idx == padding in datareader, the server will core.
  /*
  for (size_t i = 0; i < tensor->rows().size(); ++i) {
    uint64_t real_id = static_cast<uint64_t>(tensor->rows()[i]);
    if (real_id != 0) {
      sparse_push_keys.push_back(real_id);
      push_g_vec.push_back(tensor->mutable_value()->data<float>() + i * dim);
    }
  }
  */

T
tangwei12 已提交
304 305 306 307
  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
308
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
309 310 311 312 313 314 315 316 317
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_SPARSE_TABLE) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
        --_async_call_num;
      });
Z
zhaocaibei123 已提交
318
  auto status = _worker_ptr->PushSparseRawGradient(
T
tangwei12 已提交
319 320 321 322 323 324 325 326
      table_id, sparse_push_keys.data(), (const float **)push_g_vec.data(),
      sparse_push_keys.size(), closure);
  status.wait();
  return;
}

void Communicator::RpcRecvSparse(const std::string &varname, int table_id,
                                 Scope *scope) {
327 328 329
  platform::RecordEvent record_event("Communicator->RpcRecvSparse",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342
  auto *send_var = scope->Var(varname);
  auto *tensor = send_var->GetMutable<framework::LoDTensor>();
  auto dim = tensor->dims()[1];
  uint64_t sparse_num = static_cast<uint64_t>(tensor->dims()[0]);

  std::vector<uint64_t> sparse_push_keys(sparse_num);
  std::iota(sparse_push_keys.begin(), sparse_push_keys.end(), 0);

  std::vector<float *> push_g_vec;
  for (auto i = 0; i < static_cast<int>(sparse_push_keys.size()); ++i) {
    push_g_vec.push_back(tensor->data<float>() + i * dim);
  }

343 344
  bool training = true;

Z
zhaocaibei123 已提交
345
  auto status = _worker_ptr->PullSparseParam(
346
      (float **)push_g_vec.data(), table_id,  // NOLINT
347
      sparse_push_keys.data(), sparse_push_keys.size(), training);
T
tangwei12 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  status.wait();
  return;
}

void Communicator::InitParams(const RecvCtxMap &recv_varname_to_ctx) {
  if (trainer_id_ == 0) {
    for (auto &iter : recv_varname_to_ctx) {
      auto &table_id = iter.first;
      auto &varnames = iter.second;
      RpcSendDenseParam(varnames, table_id, *recv_scope_);
      VLOG(1) << "push dense param to table " << table_id
              << " from 0' trainer done";
    }
  }
  return;
}

365 366 367 368 369 370 371 372 373 374 375
void Communicator::PullDense(const RecvCtxMap &recv_varname_to_ctx) {
  for (auto &iter : recv_varname_to_ctx) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;
    RpcRecvDense(varnames, table_id, recv_scope_);
    VLOG(1) << "pull dense param to table " << table_id
            << " from 0' trainer done";
  }
  return;
}

T
tangwei12 已提交
376 377 378 379 380
void Communicator::RpcProfilerControl() {
  if (trainer_id_ == 0) {
    if (!do_server_profiler_ && platform::IsProfileEnabled()) {
      // send profiler start flag
      do_server_profiler_ = true;
Z
zhaocaibei123 已提交
381
      auto start_status = _worker_ptr->StartProfiler();
T
tangwei12 已提交
382 383 384
      start_status.wait();
    } else if (do_server_profiler_ && !platform::IsProfileEnabled()) {
      // send profiler end flag
Z
zhaocaibei123 已提交
385
      auto stop_status = _worker_ptr->StopProfiler();
T
tangwei12 已提交
386 387 388 389 390 391
      stop_status.wait();
      do_server_profiler_ = false;
    }
  }
}

392 393 394 395 396
void Communicator::SendGlobalStep(const CommContext &ctx, int batches,
                                  Scope *send_scope) {
  if (batches == 0) {
    return;
  }
397 398 399
  platform::RecordEvent record_event("Communicator->SendGlobalStep",
                                     platform::TracerEventType::Communication,
                                     1);
400
  auto &table_id = ctx.table_id;
Z
zhaocaibei123 已提交
401
  size_t request_call_num = _worker_ptr->GetServerNums();
402 403 404 405 406 407 408 409 410 411

  auto &var_name = STEP_COUNTER;
  auto *out_var = send_scope->Var(var_name);
  auto *out_t = out_var->GetMutable<framework::LoDTensor>();
  auto *data = out_t->mutable_data<int64_t>({1}, platform::CPUPlace());
  data[0] = static_cast<int64_t>(batches);
  VLOG(3) << "Communicator::SendGlobalStep send: " << batches;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(
      request_call_num, [this, request_call_num](void *done) {
        int ret = 0;
412
        auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
413 414 415 416 417 418 419 420
        for (size_t i = 0; i < request_call_num; ++i) {
          if (closure->check_response(i, PS_PUSH_GLOBAL_STEP) != 0) {
            ret = -1;
            break;
          }
        }
        closure->set_promise_value(ret);
      });
Z
zhaocaibei123 已提交
421
  auto status = _worker_ptr->PushGlobalStep(table_id, data, closure);
422 423 424 425
  status.wait();
  return;
}

T
tangwei12 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
void AsyncCommunicator::RecvThread() {
  if (!independent_recv_) return;
  VLOG(3) << "Independent RecvThread Start and Wait";

  while (running_) {
    int grad_num = grad_num_.load();
    if (grad_num > min_send_grad_num_before_recv_) {
      RecvByCommunicator();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
  }
  VLOG(1) << "communicator stopped, independent recv thread exit";
}

void AsyncCommunicator::RecvByCommunicator() {
  if (!running_) return;
  RecvNoBarrier();
  VLOG(3) << "run recv graph end";
}

void AsyncCommunicator::RecvNoBarrier() {
  for (auto &iter : recv_varname_to_ctx_) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;
    RpcRecvDense(varnames, table_id, recv_scope_);
  }

  for (auto &iter : recv_varname_to_ctx_) {
    auto var_names = iter.second;
    for (auto &t : var_names) {
      Variable *var = recv_scope_->FindVar(t);
      LoDTensor *tensor = var->GetMutable<LoDTensor>();
460
      VLOG(3) << "AsyncCommunicator::RecvNoBarrier Var " << t << " On gpu? "
T
tangwei12 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
              << platform::is_gpu_place(tensor->place());
      if (platform::is_gpu_place(tensor->place())) {
#ifdef PADDLE_WITH_CUDA
        LoDTensor *temp_tensor =
            xpu_temp_scope_->FindVar(t)->GetMutable<LoDTensor>();
        framework::TensorCopy(*temp_tensor, tensor->place(), tensor);
#endif
      }
    }
  }

  return;
}

void AsyncCommunicator::SendByCommunicator() {
  std::vector<std::future<void>> tasks;
  tasks.reserve(send_varname_to_ctx_.size());

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;

    auto send_recv_task = [this, &ctx] {
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;
      size_t var_nums = varnames.size();
      auto &check_queue = send_varname_to_queue_[varnames[0]];
      std::vector<std::vector<std::shared_ptr<Variable>>> vars;
      vars.resize(var_nums);
      int merged_var_num = 0;
      int wait_times = 0;
      while (merged_var_num < max_merge_var_num_) {
        if (check_queue->Size() == 0) {
          VLOG(4) << "wait_times -> " << wait_times;
          if (wait_times >= send_wait_times_) {
            break;
          }
          std::this_thread::sleep_for(std::chrono::milliseconds(10));
          wait_times++;
          continue;
        } else {
          wait_times = 0;
          for (size_t i = 0; i < var_nums; i++) {
            auto &var_name = varnames[i];
            auto &var_queue = send_varname_to_queue_[var_name];
            vars[i].push_back(var_queue->Pop());
          }
          merged_var_num++;
        }
      }
      if (merged_var_num == 0) return;

      for (size_t i = 0; i < var_nums; i++) {
        auto &var_name = varnames[i];
514 515 516 517 518
        if (var_name == STEP_COUNTER) {
          MergeVars<int64_t>(var_name, vars[i], send_scope_.get(), 1);
        } else {
          MergeVars<float>(var_name, vars[i], send_scope_.get(), 1);
        }
T
tangwei12 已提交
519
      }
Z
zhaocaibei123 已提交
520

521 522 523
      if (ctx.is_tensor_table) {
        SendGlobalStep(ctx, merged_var_num, send_scope_.get());
      } else if (ctx.is_sparse) {
T
tangwei12 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        RpcSendSparse(varnames[0], table_id, *send_scope_);
      } else {
        RpcSendDense(ctx, *send_scope_);
        if (!independent_recv_ &&
            recv_varname_to_ctx_.find(table_id) != recv_varname_to_ctx_.end()) {
          auto recv_varnames = recv_varname_to_ctx_.at(table_id);
          RpcRecvDense(recv_varnames, table_id, recv_scope_);
        }
      }
      if (independent_recv_) {
        grad_num_.fetch_add(1, std::memory_order_relaxed);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(send_recv_task)));
  }
  for (auto &task : tasks) {
    task.wait();
  }
  return;
}

Z
zhaocaibei123 已提交
549 550 551 552 553 554 555
void AsyncCommunicator::PushDensePostProcessing() {
  if (independent_recv_) {
    grad_num_.fetch_add(1, std::memory_order_relaxed);
  }
  return;
}

T
tangwei12 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
void AsyncCommunicator::MainThread() {
  VLOG(3) << "AsyncCommunicator MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    SendByCommunicator();
    RpcProfilerControl();
  }
  VLOG(1) << "communicator stopped, send thread exit";
}

Y
yaoxuefeng 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
void AsyncCommunicator::PullSparseToTensorSync(
    const uint64_t table_id, int fea_dim, uint64_t padding_id,
    platform::Place place, bool is_training,
    std::vector<const LoDTensor *> *inputs, std::vector<LoDTensor *> *outputs) {
  std::vector<uint64_t> fea_keys;
  std::vector<float *> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor *output = nullptr;
  float *output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor *tensor = inputs->at(index);
    const int64_t *ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output->set_lod(tensor->lod());
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
        memcpy(output_data + output_len, init_value.data(),
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
  auto status =
Z
zhaocaibei123 已提交
610 611
      _worker_ptr->PullSparse(pull_result_ptr.data(), table_id, fea_keys.data(),
                              fea_keys.size(), is_training);
Y
yaoxuefeng 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
}

void AsyncCommunicator::PushSparseFromTensorAsync(
    const uint64_t table_id, int fea_dim, uint64_t padding_id,
    platform::Place place, std::vector<const framework::LoDTensor *> *inputs,
    const framework::LoDTensor *shows, const framework::LoDTensor *clks,
    std::vector<framework::LoDTensor *> *outputs) {
  int batch_size = -1;
  bool batch_size_consist = true;
  for (auto *input : *inputs) {
    int cur_batch_size =
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
      batch_size = cur_batch_size;
632
    } else if (batch_size != cur_batch_size) {
Y
yaoxuefeng 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
      // CHECK(batch_size == cur_batch_size);  // NOLINT
      batch_size_consist = false;
      break;
    }
  }
  CHECK(batch_size > 0);  // NOLINT

  int show_size =
      shows->lod().size() ? shows->lod()[0].size() - 1 : shows->dims()[0];
  CHECK(show_size == batch_size || show_size == 1);
  int clk_size =
      clks->lod().size() ? clks->lod()[0].size() - 1 : clks->dims()[0];
  CHECK(clk_size == batch_size || clk_size == 1);

  CHECK(outputs->size() == inputs->size());
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;

655 656
  VLOG(2) << "fleet.cc::emb_dim: " << fea_dim << " batch_size: " << batch_size
          << " batch_size_consist: " << batch_size_consist;
Y
yaoxuefeng 已提交
657 658 659 660 661 662 663 664 665 666

  // TODO(zhaocaibei123): check type of show/clk is int? float? uint64?
  // const long int* show_tensor = shows->data<int64_t>();
  // const long int* clk_tensor = clks->data<int64_t>();
  const int64_t *show_tensor = shows->data<int64_t>();
  const int64_t *clk_tensor = clks->data<int64_t>();

  for (size_t index = 0; index < inputs->size(); ++index) {
    framework::LoDTensor *g_tensor = outputs->at(index);
    float *g = g_tensor->data<float>();
667

Y
yaoxuefeng 已提交
668 669 670 671 672
    if (batch_size_consist) {  // TODO(zhaocaibei123): add config
                               // scale_sparse_gradient_with_batch_size_
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / fea_dim, fea_dim);
673 674
      g_mat.rightCols(fea_dim - 2) *=
          batch_size;  // hard code here, because of cvm_grad op
Y
yaoxuefeng 已提交
675 676 677 678 679 680 681 682 683
    }

    const framework::LoDTensor *tensor = inputs->at(index);
    const int64_t *ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    output_len = 0;

    if (tensor->lod().size() > 0) {
      for (size_t i = 0; i < tensor->lod()[0].size() - 1; ++i) {
Z
zhangchunle 已提交
684
        for (size_t j = tensor->lod()[0][i]; j < tensor->lod()[0][i + 1];
Y
yaoxuefeng 已提交
685 686 687 688 689 690
             ++j, output_len += fea_dim) {
          uint64_t real_id = static_cast<uint64_t>(ids[j]);
          if (real_id == padding_id) {
            continue;
          }
          push_keys.emplace_back(real_id);
691
          push_values.emplace_back(fea_dim + 1);
Y
yaoxuefeng 已提交
692 693 694
          // slot show clk grad... consistent with CtrCommonPushValue defined in
          // ctr_accessor.h
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
695 696 697 698
          // push_values.back()[1] =
          //    (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
          // push_values.back()[2] =
          //    (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
Y
yaoxuefeng 已提交
699

700
          float *data = push_values.back().data() + 1;  // hard code here
Y
yaoxuefeng 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713

          memcpy(data, g + output_len, sizeof(float) * fea_dim);

          ++input_idx;
        }
      }
    } else {
      for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
        uint64_t real_id = static_cast<uint64_t>(ids[i]);
        if (real_id == padding_id) {
          continue;
        }
        push_keys.emplace_back(real_id);
714
        push_values.emplace_back(fea_dim + 1);
Y
yaoxuefeng 已提交
715 716 717
        // slot show clk grad... consistent with CtrCommonPushValue defined in
        // ctr_accessor.h
        push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
718 719 720 721
        // push_values.back()[1] =
        //    (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
        // push_values.back()[2] =
        //    (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
Y
yaoxuefeng 已提交
722

723
        float *data = push_values.back().data() + 1;
Y
yaoxuefeng 已提交
724 725 726 727 728 729

        memcpy(data, g + output_len, sizeof(float) * fea_dim);

        ++input_idx;
      }
    }
Z
zhangchunle 已提交
730
    CHECK(static_cast<size_t>(output_len) == g_tensor->numel());
Y
yaoxuefeng 已提交
731 732 733 734 735 736 737 738 739 740 741 742
  }

  std::vector<float *> push_g_vec(input_idx, nullptr);

  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }

  PADDLE_ENFORCE_EQ(
      this->Check(table_id), true,
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
Z
zhaocaibei123 已提交
743 744 745
  auto status = _worker_ptr->PushSparse(table_id, push_keys.data(),
                                        (const float **)push_g_vec.data(),
                                        push_keys.size());
Y
yaoxuefeng 已提交
746 747
}

T
tangwei12 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
void HalfAsyncCommunicator::MainThread() {
  VLOG(3) << "HalfAsyncCommunicator MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    SendByCommunicator();
    BarrierSend();
    RecvByCommunicator();
    BarrierRecv();
    BarrierWeakUp();
  }
  VLOG(1) << "communicator stopped, send thread exit";
}

void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RecvCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);
  send_scope_.reset(new Scope());
  xpu_temp_scope_.reset(new Scope());
  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    auto &varnames = ctx.origin_varnames;
    for (auto &var_name : varnames) {
      send_varname_to_queue_[var_name] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              send_queue_size_);
    }
  }
  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));
}

AsyncCommunicator::~AsyncCommunicator() {
  running_ = false;
  if (main_thread_) main_thread_->join();
  if (recv_thread_) recv_thread_->join();
}

void AsyncCommunicator::Start() {
  VLOG(1) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    waiting_ = true;
    running_ = true;
    // flushing_ = false;
    BarrierTriggerReset(max_merge_var_num_);
    // start send and recv thread
    main_thread_.reset(
        new std::thread(std::bind(&AsyncCommunicator::MainThread, this)));
    if (independent_recv_) {
      recv_thread_.reset(
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
    }
  }
}

void AsyncCommunicator::Stop() {
Z
zhaocaibei123 已提交
813
  VLOG(1) << "Communicator stop begin";
T
tangwei12 已提交
814 815 816 817
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
Z
zhaocaibei123 已提交
818
    // _worker_ptr->FinalizeWorker();
Z
zhaocaibei123 已提交
819
    VLOG(1) << "client finalize_worker done";
T
tangwei12 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
    if (main_thread_) {
      VLOG(1) << "stop main thread";
      main_thread_->join();
      main_thread_.reset(nullptr);
    }
  }
  VLOG(1) << "Communicator stop done";
}

bool AsyncCommunicator::Check(const std::vector<std::string> &var_tables) {
  PADDLE_ENFORCE_EQ(
      var_tables.size(), 1,
      platform::errors::InvalidArgument("var_tables.size() == 1 is permitted"));

  auto table_name = var_tables[0];
840
  if (send_varname_to_ctx_.find(table_name) == send_varname_to_ctx_.end()) {
T
tangwei12 已提交
841
    return false;
842 843 844 845 846
  }
  if (table_name == STEP_COUNTER) {
    VLOG(3) << "send step_counter into queue";
    auto tmp_var = std::make_shared<Variable>();
    auto *tensor = tmp_var->GetMutable<framework::LoDTensor>();
847
    tensor->Resize(phi::make_ddim({1}));
848 849 850 851
    auto *out_d = tensor->mutable_data<int64_t>(platform::CPUPlace());
    out_d[0] = 1;
    send_varname_to_queue_[table_name]->Push(tmp_var);
  }
T
tangwei12 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
  return true;
}

bool AsyncCommunicator::Check(const int table_id) {
  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    if (ctx.table_id == table_id) return true;
  }
  return false;
}

void AsyncCommunicator::Send(const std::vector<std::string> &var_names,
                             const framework::Scope &scope) {
  waiting_ = false;
  for (size_t i = 0; i < var_names.size(); i++) {
    auto *var = scope.FindVar(var_names[i]);
    auto tmp_grad_var = std::make_shared<Variable>();
    framework::CopyVariable(*var, tmp_grad_var.get());
    send_varname_to_queue_[var_names[i]]->Push(tmp_grad_var);
  }
}

void HalfAsyncCommunicator::Clean() {
  for (auto &iter : send_varname_to_queue_) {
    auto &var_name = iter.first;
    auto &var_queue = iter.second;

    while (var_queue->Size() > 0) {
      var_queue->Pop();
    }

    VLOG(3) << "clean var: " << var_name << " done";
  }
}

void HalfAsyncCommunicator::BarrierTriggerDecrement() {
  barrier_trigger_--;
  VLOG(3) << "BarrierTriggerDecrement decrement barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::BarrierTriggerReset(int initial_val) {
  barrier_trigger_.store(initial_val);

  VLOG(3) << "BarrierTriggerReset reset barrier trigger to "
          << barrier_trigger_.load();
}

void HalfAsyncCommunicator::Barrier() {
  barrier_counter_++;

  if (!running_) {
    VLOG(3) << "Communicator is not running, release barrier";
    return;
  }

  {
    std::unique_lock<std::mutex> lk(barrier_mutex_);
    barrier_cond_.wait(lk, [this] { return (barrier_counter_ == 0); });
  }
}

int HalfAsyncCommunicator::BatchesCounter() {
  while (running_) {
    if (barrier_counter_.load() >= barrier_trigger_.load() &&
        barrier_trigger_.load() != 0) {
      break;
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
  }

  return barrier_counter_.load();
}

void HalfAsyncCommunicator::SendByCommunicator() {
  int batches = BatchesCounter();
  VLOG(1) << "HalfAsyncCommunicator::BatchesCounter = " << batches;
  if (batches <= 0) return;

  std::vector<std::future<void>> tasks;
  tasks.reserve(send_varname_to_ctx_.size());

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
    auto send_recv_task = [this, &ctx, batches] {
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;
      size_t var_nums = varnames.size();

      std::vector<std::vector<std::shared_ptr<Variable>>> vars;
      vars.resize(var_nums);
      for (size_t i = 0; i < var_nums; i++) {
        auto &var_name = varnames[i];
        auto &var_queue = send_varname_to_queue_[var_name];
        for (int j = 0; j < batches; j++) vars[i].push_back(var_queue->Pop());
        MergeVars<float>(var_name, vars[i], send_scope_.get(), 1);
      }

      if (ctx.is_sparse) {
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        RpcSendSparse(varnames[0], table_id, *send_scope_);
      } else {
        RpcSendDense(ctx, *send_scope_);
      }
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(send_recv_task)));
  }
  for (auto &task : tasks) {
    task.wait();
  }
  return;
}

void HalfAsyncCommunicator::BarrierWeakUp() {
  barrier_counter_.store(0);
  barrier_cond_.notify_all();
}

void SyncCommunicator::BarrierSend() {
  if (!running_) return;
  BarrierWithTable(0);
  VLOG(4) << "BarrierSend with SyncCommunicator";
}

void SyncCommunicator::BarrierRecv() {
  if (!running_) return;
  BarrierWithTable(1);

  VLOG(4) << "BarrierRecv with SyncCommunicator";
}

void GeoCommunicator::Send(const std::vector<std::string> &var_names,
                           const framework::Scope &scope) {
989 990
  platform::RecordEvent record_event(
      "GeoCommunicator->Send", platform::TracerEventType::Communication, 1);
T
tangwei12 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
  waiting_ = false;
  auto before_send = GetCurrentUS();
  auto table_name = var_names[0];

  size_t splited_var_nums =
      send_varname_to_ctx_[table_name].splited_varnames.size();

  std::unordered_map<std::string, std::unordered_set<int64_t>> ids_table;

  for (size_t j = 0; j < splited_var_nums; j++) {
    ids_table.insert(std::pair<std::string, std::unordered_set<int64_t>>(
        send_varname_to_ctx_[table_name].splited_varnames[j],
        std::unordered_set<int64_t>()));
  }

  auto *var = scope.FindVar(table_name);

1008
  PADDLE_ENFORCE_EQ(var->IsType<phi::SelectedRows>(), true,
T
tangwei12 已提交
1009 1010
                    platform::errors::InvalidArgument(
                        "Only need to send Sparse Grad in Geo mode."));
1011
  auto &rows = var->Get<phi::SelectedRows>().rows();
T
tangwei12 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

  // insert ids which has not been record
  for (size_t j = 0; j < rows.size(); j++) {
    auto ep_idx = rows[j] % splited_var_nums;
    ids_table.at(send_varname_to_ctx_[table_name].splited_varnames[ep_idx])
        .insert(rows[j]);
  }

  for (auto &iter : ids_table) {
    auto &key = iter.first;
    auto &sparse_ids_set = iter.second;
    auto sparse_ids_vec = std::make_shared<std::vector<int64_t>>();
    sparse_ids_vec->assign(sparse_ids_set.begin(), sparse_ids_set.end());
Z
zhaocaibei123 已提交
1025
    sparse_id_queues_.at(key)->Put(sparse_ids_vec);
T
tangwei12 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    VLOG(3) << "push " << sparse_ids_vec->size() << " ids to " << key
            << "'s queue";
  }

  auto after_send = GetCurrentUS();
  VLOG(2) << "run send op finish. use time " << (after_send - before_send);
}

void GeoCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                               const RecvCtxMap &recv_varname_to_ctx,
                               Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

  PADDLE_ENFORCE_GT(
      send_varname_to_ctx.size(), 0,
      platform::errors::InvalidArgument("send var contexts can not be zero"));

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
Z
zhaocaibei123 已提交
1047 1048 1049 1050
    if (!ctx.is_sparse) {
      parallel_task_nums_ += 1;
      continue;
    }
T
tangwei12 已提交
1051 1052 1053 1054 1055 1056 1057 1058
    auto &varnames = ctx.origin_varnames;
    PADDLE_ENFORCE_EQ(
        varnames.size(), 1,
        platform::errors::InvalidArgument(
            "sparse variables can only be merged by one variables"));
    for (auto &splited_var : ctx.splited_varnames) {
      parallel_task_nums_ += 1;
      sparse_id_queues_.insert(
Z
zhaocaibei123 已提交
1059 1060
          std::pair<std::string, paddle::framework::Channel<
                                     std::shared_ptr<std::vector<int64_t>>>>(
T
tangwei12 已提交
1061
              splited_var,
Z
zhaocaibei123 已提交
1062 1063
              paddle::framework::MakeChannel<
                  std::shared_ptr<std::vector<int64_t>>>(send_queue_size_)));
T
tangwei12 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    }
  }

  send_threadpool_.reset(new ::ThreadPool(thread_pool_size_));

  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
}

void GeoCommunicator::InitParams(const RecvCtxMap &recv_varname_to_ctx) {
  std::vector<std::future<void>> tasks;
  tasks.reserve(recv_varname_to_ctx_.size());

  for (auto &iter : recv_varname_to_ctx_) {
    auto &table_id = iter.first;
    auto &varnames = iter.second;

    auto recv_task = [this, &table_id, &varnames] {
      InitDense(varnames, table_id);
    };
    tasks.emplace_back(send_threadpool_->enqueue(std::move(recv_task)));
  }

  for (auto &task : tasks) {
    task.wait();
  }

  for (auto &iter : send_varname_to_ctx_) {
    auto &ctx = iter.second;
T
tangwei12 已提交
1094
    if (!ctx.is_sparse) continue;
T
tangwei12 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    auto &varname = ctx.origin_varnames[0];
    auto &table_id = ctx.table_id;
    auto param = varname.substr(0, varname.size() - 5);
    InitSparse(param, table_id);
  }
  return;
}

void GeoCommunicator::InitDense(std::vector<std::string> &varnames,
                                int table_id) {
  if (trainer_id_ == 0) {
    RpcSendDenseParam(varnames, table_id, *recv_scope_);
    BarrierWithTable(1);
T
tangwei12 已提交
1108
    VLOG(1) << "push dense param to table " << table_id
T
tangwei12 已提交
1109 1110 1111 1112
            << " from 0' trainer done";
  } else {
    BarrierWithTable(1);
    RpcRecvDense(varnames, table_id, recv_scope_);
T
tangwei12 已提交
1113
    VLOG(1) << "pull dense param to table " << table_id
T
tangwei12 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
            << " from 0' trainer done";
  }

  // copy to old_scope
  for (auto &t : varnames) {
    auto *global_var = recv_scope_->FindVar(t);
    global_var->GetMutable<framework::LoDTensor>();
    auto *old_var = old_scope_->Var(t);
    old_var->GetMutable<framework::LoDTensor>();
    framework::CopyVariable(*global_var, old_var);
Z
zhaocaibei123 已提交
1124 1125 1126 1127
    // init pserver_scope_
    auto *pserver_var = pserver_scope_->Var(t);
    pserver_var->GetMutable<framework::LoDTensor>();
    framework::CopyVariable(*global_var, pserver_var);
T
tangwei12 已提交
1128 1129 1130 1131 1132
  }
  VLOG(1) << "init dense table " << table_id << " done";
}

void GeoCommunicator::SendDense(const CommContext &send_ctx) {
1133 1134 1135
  platform::RecordEvent record_event("GeoCommunicator->SendDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
  auto &var_names = send_ctx.origin_varnames;
  auto &table_id = send_ctx.table_id;
  for (auto &varname : var_names) {
    auto param_name = GradToParam(varname);
    auto *var_latest = recv_scope_->FindVar(param_name);
    auto *var_timestamp = old_scope_->FindVar(param_name);

    PADDLE_ENFORCE_EQ(var_latest->IsInitialized(), true,
                      platform::errors::Unavailable(
                          "%s is not initialized, please check", param_name));
    PADDLE_ENFORCE_EQ(var_timestamp->IsInitialized(), true,
                      platform::errors::Unavailable(
                          "%s is not initialized, please check", param_name));

    auto &t_latest = var_latest->Get<framework::LoDTensor>();
    auto t_timestamp = var_timestamp->GetMutable<framework::LoDTensor>();

W
Wilber 已提交
1153
    paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1154 1155 1156 1157
    auto *var_delta = delta_scope_->Var(varname);
    auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
    t_delta->mutable_data<float>(t_latest.dims(), cpu_ctx.GetPlace());

1158
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    blas.VSUB(t_latest.numel(), t_latest.data<float>(),
              t_timestamp->data<float>(), t_delta->data<float>());

    float coefficient = 1.0 / static_cast<float>(trainers_);
    blas.SCAL(t_latest.numel(), coefficient, t_delta->data<float>());

    blas.VADD(t_latest.numel(), t_timestamp->data<float>(),
              t_delta->data<float>(), t_timestamp->data<float>());
  }
  RpcSendDense(send_ctx, *delta_scope_);
  VLOG(1) << "Finish Send Dense " << var_names[0] << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::RecvDense(const CommContext &send_ctx) {
1174 1175 1176
  platform::RecordEvent record_event("GeoCommunicator->RecvDense",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1177 1178 1179 1180 1181 1182
  auto &table_id = send_ctx.table_id;
  auto &varnames = recv_varname_to_ctx_.at(table_id);
  // 1. recv from pserver
  RpcRecvDense(varnames, table_id, pserver_scope_.get());

  // 2.1 pserver - old => delta; 2.2 latest + old => latest 2.3 old => pserver
W
Wilber 已提交
1183
  paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
  for (auto &varname : varnames) {
    auto *var_latest = recv_scope_->FindVar(varname);
    auto t_latest = var_latest->GetMutable<framework::LoDTensor>();

    auto *var_old = old_scope_->FindVar(varname);
    auto t_old = var_old->GetMutable<framework::LoDTensor>();

    auto *var_pserver = pserver_scope_->FindVar(varname);
    auto t_pserver = var_pserver->Get<framework::LoDTensor>();

    auto *var_delta = delta_scope_->Var(varname);
    auto *t_delta = var_delta->GetMutable<framework::LoDTensor>();
    t_delta->mutable_data<float>(t_latest->dims(), cpu_ctx.GetPlace());

1198
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    blas.VSUB(t_latest->numel(), t_pserver.data<float>(), t_old->data<float>(),
              t_delta->data<float>());
    blas.VADD(t_latest->numel(), t_latest->data<float>(),
              t_delta->data<float>(), t_latest->data<float>());
    blas.VCOPY(t_latest->numel(), t_pserver.data<float>(),
               t_old->data<float>());
  }
  VLOG(1) << "Finish Recv Dense " << varnames[0] << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::InitSparse(const std::string &var_name, int table_id) {
T
tangwei12 已提交
1211
  VLOG(1) << "Init Sparse " << var_name << " : table " << table_id << " begin.";
T
tangwei12 已提交
1212 1213 1214
  if (trainer_id_ == 0) {
    RpcSendSparseParam(var_name, table_id, *recv_scope_);
    BarrierWithTable(1);
T
tangwei12 已提交
1215
    VLOG(1) << "push sparse param to table " << table_id
T
tangwei12 已提交
1216 1217 1218 1219
            << " from 0' trainer done";
  } else {
    BarrierWithTable(1);
    RpcRecvSparse(var_name, table_id, recv_scope_);
T
tangwei12 已提交
1220
    VLOG(1) << "pull sparse param to table " << table_id
T
tangwei12 已提交
1221 1222 1223
            << " from 0' trainer done";
  }

T
tangwei12 已提交
1224
  VLOG(1) << "Init Sparse " << var_name << " : table " << table_id << " done.";
T
tangwei12 已提交
1225 1226 1227 1228 1229 1230 1231 1232
  auto *global_var = recv_scope_->FindVar(var_name);
  auto *var = old_scope_->Var(var_name);
  framework::CopyVariable(*global_var, var);
  return;
}

std::vector<int64_t> GeoCommunicator::MergeSparseIds(
    const std::string &send_varname) {
1233 1234 1235
  platform::RecordEvent record_event("GeoCommunicator->MergeSparseIds",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1236 1237 1238 1239 1240 1241
  size_t merge_num = 0, wait_times = 0;
  std::unordered_set<int64_t> sparse_ids;
  while (merge_num < static_cast<size_t>(max_merge_var_num_)) {
    VLOG(3) << "Merge Number of " << send_varname << " = " << merge_num;
    if (sparse_id_queues_.at(send_varname)->Size() > 0) {
      wait_times = 0;
Z
zhaocaibei123 已提交
1242 1243
      std::shared_ptr<std::vector<int64_t>> pop_ids = nullptr;
      sparse_id_queues_.at(send_varname)->Get(pop_ids);
T
tangwei12 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
      for (size_t j = 0; j < pop_ids->size(); j++) {
        sparse_ids.insert(pop_ids->at(j));
      }
      merge_num += 1;
      VLOG(3) << "sparse_id_queues_(" << send_varname << ") pushed";
    } else if (sparse_id_queues_.at(send_varname)->Size() == 0) {
      VLOG(3) << "wait_times -> " << wait_times;
      if (wait_times >= static_cast<size_t>(send_wait_times_)) {
        break;
      }
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
      wait_times++;
      continue;
    }
  }
  std::vector<int64_t> res;
  res.assign(sparse_ids.begin(), sparse_ids.end());
  return res;
}

void GeoCommunicator::SendSparse(const std::string &varname,
                                 std::vector<int64_t> &sparse_ids, int table_id,
                                 int ep_idx) {
1267 1268 1269
  platform::RecordEvent record_event("GeoCommunicator->SendSparse",
                                     platform::TracerEventType::Communication,
                                     1);
Z
zhaocaibei123 已提交
1270 1271 1272
  if (sparse_ids.size() == 0) {
    return;
  }
T
tangwei12 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
  std::string param_name = SplitedGradToParam(varname);
  VLOG(1) << "In GeoCommunicator::SendSparse(" << varname << " " << param_name
          << ", ids.size = " << sparse_ids.size() << ", table_id: " << table_id
          << ", ep_idx: " << ep_idx;

  auto *var_latest = recv_scope_->FindVar(param_name);
  auto *var_old = old_scope_->FindVar(param_name);

  PADDLE_ENFORCE_EQ(var_latest->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", param_name));
  PADDLE_ENFORCE_EQ(var_old->IsInitialized(), true,
                    platform::errors::Unavailable(
                        "%s is not initialized, please check", param_name));

  auto &t_latest = var_latest->Get<framework::LoDTensor>();
  auto *t_old = var_old->GetMutable<framework::LoDTensor>();

  auto dims1 = t_latest.dims()[1];
W
Wilber 已提交
1292
  paddle::platform::CPUDeviceContext cpu_ctx;
T
tangwei12 已提交
1293 1294

  auto *var_delta = delta_scope_->Var(varname);
1295
  auto *t_delta = var_delta->GetMutable<phi::SelectedRows>();
T
tangwei12 已提交
1296 1297 1298 1299 1300 1301 1302
  auto *var_t_value = t_delta->mutable_value();
  var_t_value->Resize({static_cast<int64_t>(sparse_ids.size()), dims1});
  auto *t_value = var_t_value->mutable_data<float>(cpu_ctx.GetPlace());

  t_delta->set_rows(sparse_ids);
  t_delta->set_height(t_latest.dims()[0]);

1303
  auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
  float coefficient = 1.0 / static_cast<float>(trainers_);

  std::vector<float *> push_g_vec;
  for (auto j = 0; j < static_cast<int>(sparse_ids.size()); ++j) {
    blas.VSUB(dims1, t_latest.data<float>() + sparse_ids[j] * dims1,
              t_old->data<float>() + sparse_ids[j] * dims1,
              t_value + j * dims1);
    blas.SCAL(dims1, coefficient, t_value + j * dims1);
    blas.VADD(dims1, t_old->data<float>() + sparse_ids[j] * dims1,
              t_value + j * dims1,
              t_old->data<float>() + sparse_ids[j] * dims1);
    push_g_vec.push_back(t_value + j * dims1);
Z
zhaocaibei123 已提交
1316 1317 1318 1319

    VLOG(5) << "DEBUG GeoCommunicator::SendSparse send sparse key "
            << sparse_ids[j] << " value[0] " << push_g_vec[j][0]
            << " value[-1] " << push_g_vec[j][dims1 - 1];
T
tangwei12 已提交
1320 1321 1322 1323 1324
  }

  ++_async_call_num;
  DownpourBrpcClosure *closure = new DownpourBrpcClosure(1, [this](void *done) {
    int ret = 0;
1325
    auto *closure = (DownpourBrpcClosure *)done;  // NOLINT
T
tangwei12 已提交
1326 1327 1328 1329 1330 1331
    if (closure->check_response(0, PS_PUSH_SPARSE_TABLE) != 0) {
      ret = -1;
    }
    closure->set_promise_value(ret);
    --_async_call_num;
  });
Z
zhaocaibei123 已提交
1332
  auto status = _worker_ptr->PushSparseRawGradientPartial(
T
tangwei12 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
      table_id, (const uint64_t *)sparse_ids.data(),
      (const float **)push_g_vec.data(), sparse_ids.size(), closure, ep_idx);
  status.wait();

  VLOG(1) << "Finish Send Sparse " << varname
          << ", ids.size = " << sparse_ids.size() << ", table_id: " << table_id;
  return;
}

void GeoCommunicator::RecvSparse(const std::string &varname, int table_id,
                                 int ep_idx) {
1344 1345 1346
  platform::RecordEvent record_event("GeoCommunicator->RecvSparse",
                                     platform::TracerEventType::Communication,
                                     1);
T
tangwei12 已提交
1347 1348 1349
  // 1. recv from pserver
  std::vector<uint64_t> keys;
  std::vector<float> values;
Z
zhaocaibei123 已提交
1350
  auto status = _worker_ptr->PullGeoParam(table_id, &values, &keys, ep_idx);
T
tangwei12 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
  status.wait();

  std::string param = SplitedGradToParam(varname);
  VLOG(1) << "RecvSparse receive var: " << varname << " " << param << ", "
          << table_id << "; ids Size: " << keys.size()
          << "; values size: " << values.size();

  auto *var_latest = recv_scope_->FindVar(param);
  auto *var_old = old_scope_->FindVar(param);

  auto *t_latest = var_latest->GetMutable<framework::LoDTensor>();
  auto *t_old = var_old->GetMutable<framework::LoDTensor>();

  auto dims1 = t_latest->dims()[1];
  auto numel = keys.size() * dims1;

  std::vector<float> v_delta;
  v_delta.resize(numel);

W
Wilber 已提交
1370
  paddle::platform::CPUDeviceContext cpu_ctx;
1371
  auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, float>(cpu_ctx);
T
tangwei12 已提交
1372 1373

  for (auto j = 0; j < static_cast<int>(keys.size()); ++j) {
Z
zhaocaibei123 已提交
1374 1375 1376
    VLOG(5) << "DEBUG GeoCommunicator::RecvSparse recv sparse key" << keys[j]
            << "value[0] " << values[j * dims1] << " value[-1] "
            << values[j * dims1 + dims1 - 1];
T
tangwei12 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
    float *latest_data = t_latest->data<float>() + keys[j] * dims1;
    float *old_data = t_old->data<float>() + keys[j] * dims1;
    // pserver - old => delta
    blas.VSUB(dims1, values.data() + j * dims1, old_data,
              v_delta.data() + j * dims1);
    // latest + delta => latest
    blas.VADD(dims1, latest_data, v_delta.data() + j * dims1, latest_data);
    // pserver => old
    blas.VCOPY(dims1, values.data() + j * dims1, old_data);
  }
  VLOG(1) << "Finish Recv Sparse " << param << ", table_id: " << table_id;
}

void GeoCommunicator::MainThread() {
  VLOG(3) << "MainThread start and wait";

  while (waiting_ && running_) {
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    VLOG(3) << "wait for running";
  }

  while (running_) {
    std::vector<std::future<void>> tasks;
    tasks.reserve(parallel_task_nums_);

    for (auto &iter : send_varname_to_ctx_) {
      auto &ctx = iter.second;
      auto &varnames = ctx.origin_varnames;
      auto &table_id = ctx.table_id;

      if (ctx.is_sparse) {
        PADDLE_ENFORCE_EQ(
            varnames.size(), 1,
            platform::errors::InvalidArgument(
                "sparse variables can only be merged by one variables"));
        int pserver_num = static_cast<int>(ctx.epmap.size());
        for (int ep_idx = 0; ep_idx < pserver_num; ep_idx++) {
          // varname: emb@GRAD, param_name: emb, splited_varname: emb.delta0
          auto send_recv_task = [this, table_id, ep_idx, &ctx] {
            auto splited_varname = ctx.splited_varnames[ep_idx];
            auto sparse_ids = MergeSparseIds(splited_varname);
            SendSparse(splited_varname, sparse_ids, table_id, ep_idx);
            RecvSparse(splited_varname, table_id, ep_idx);
          };
          tasks.emplace_back(
              send_threadpool_->enqueue(std::move(send_recv_task)));
        }
      } else {
        auto send_recv_task = [this, &ctx] {
          SendDense(ctx);
          RecvDense(ctx);
        };
        tasks.emplace_back(
            send_threadpool_->enqueue(std::move(send_recv_task)));
      }
    }
    for (auto &task : tasks) {
      task.wait();
    }
  }
}

}  // namespace distributed
}  // namespace paddle