# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import ast import time import json import argparse import numpy as np import cv2 import paddle.fluid as fluid from PIL import Image from PIL import ImageDraw import argparse def parse_args(): parser = argparse.ArgumentParser('mask detection.') parser.add_argument('--models_dir', type=str, default='', help='path of models.') parser.add_argument('--img_paths', type=str, default='', help='path of images') parser.add_argument('--video_path', type=str, default='', help='path of video.') parser.add_argument('--use_camera', type=bool, default=False, help='switch detect video or camera, default:video.') parser.add_argument('--open_imshow', type=bool, default=False, help='visualize video detection results in real time.') parser.add_argument('--use_gpu', type=bool, default=False, help='switch cpu/gpu, default:cpu.') args = parser.parse_args() return args class FaceResult: def __init__(self, rect_data, rect_info): self.rect_info = rect_info self.rect_data = rect_data self.class_id = -1 self.score = 0.0 def VisualizeResult(im, faces): LABELS = ['NO_MASK', 'MASK'] COLORS = [(0, 0, 255), (0, 255, 0)] for face in faces: label = LABELS[face.class_id] color = COLORS[face.class_id] left, right, top, bottom = [int(item) for item in face.rect_info] label_position = (left, top) cv2.putText(im, label, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2, cv2.LINE_AA) cv2.rectangle(im, (left, top), (right, bottom), color, 3) return im def LoadModel(model_dir, use_gpu=False): config = fluid.core.AnalysisConfig(model_dir + '/__model__', model_dir + '/__params__') if use_gpu: config.enable_use_gpu(100, 0) config.switch_ir_optim(True) else: config.disable_gpu() config.disable_glog_info() config.switch_specify_input_names(True) config.enable_memory_optim() return fluid.core.create_paddle_predictor(config) class MaskClassifier: def __init__(self, model_dir, mean, scale, use_gpu=False): self.mean = np.array(mean).reshape((3, 1, 1)) self.scale = np.array(scale).reshape((3, 1, 1)) self.predictor = LoadModel(model_dir, use_gpu) self.EVAL_SIZE = (128, 128) def Preprocess(self, faces): h, w = self.EVAL_SIZE[1], self.EVAL_SIZE[0] inputs = [] for face in faces: im = cv2.resize(face.rect_data, (128, 128), fx=0, fy=0, interpolation=cv2.INTER_CUBIC) # HWC -> CHW im = im.swapaxes(1, 2) im = im.swapaxes(0, 1) # Convert to float im = im[:, :, :].astype('float32') / 256.0 # im = (im - mean) * scale im = im - self.mean im = im * self.scale im = im[np.newaxis, :, :, :] inputs.append(im) return inputs def Postprocess(self, output_data, faces): argmx = np.argmax(output_data, axis=1) for idx in range(len(faces)): faces[idx].class_id = argmx[idx] faces[idx].score = output_data[idx][argmx[idx]] return faces def Predict(self, faces): inputs = self.Preprocess(faces) if len(inputs) != 0: input_data = np.concatenate(inputs) im_tensor = fluid.core.PaddleTensor( input_data.copy().astype('float32')) output_data = self.predictor.run([im_tensor])[0] output_data = output_data.as_ndarray() self.Postprocess(output_data, faces) class FaceDetector: def __init__(self, model_dir, mean, scale, use_gpu=False, threshold=0.7): self.mean = np.array(mean).reshape((3, 1, 1)) self.scale = np.array(scale).reshape((3, 1, 1)) self.threshold = threshold self.predictor = LoadModel(model_dir, use_gpu) def Preprocess(self, image, shrink): h, w = int(image.shape[1] * shrink), int(image.shape[0] * shrink) im = cv2.resize(image, (h, w), fx=0, fy=0, interpolation=cv2.INTER_CUBIC) # HWC -> CHW im = im.swapaxes(1, 2) im = im.swapaxes(0, 1) # Convert to float im = im[:, :, :].astype('float32') # im = (im - mean) * scale im = im - self.mean im = im * self.scale im = im[np.newaxis, :, :, :] return im def Postprocess(self, output_data, ori_im, shrink): det_out = [] h, w = ori_im.shape[0], ori_im.shape[1] for out in output_data: class_id = int(out[0]) score = out[1] xmin = (out[2] * w) ymin = (out[3] * h) xmax = (out[4] * w) ymax = (out[5] * h) wd = xmax - xmin hd = ymax - ymin valid = (xmax >= xmin and xmin > 0 and ymax >= ymin and ymin > 0) if score > self.threshold and valid: roi_rect = ori_im[int(ymin):int(ymax), int(xmin):int(xmax)] det_out.append(FaceResult(roi_rect, [xmin, xmax, ymin, ymax])) return det_out def Predict(self, image, shrink): ori_im = image.copy() im = self.Preprocess(image, shrink) im_tensor = fluid.core.PaddleTensor(im.copy().astype('float32')) output_data = self.predictor.run([im_tensor])[0] output_data = output_data.as_ndarray() return self.Postprocess(output_data, ori_im, shrink) def predict_images(args): detector = FaceDetector(model_dir=args.models_dir + '/pyramidbox_lite/', mean=[104.0, 177.0, 123.0], scale=[0.007843, 0.007843, 0.007843], use_gpu=args.use_gpu, threshold=0.7) classifier = MaskClassifier(model_dir=args.models_dir + '/mask_detector/', mean=[0.5, 0.5, 0.5], scale=[1.0, 1.0, 1.0], use_gpu=args.use_gpu) names = [] image_paths = [] for name in os.listdir(args.img_paths): if name.split('.')[-1] in ['jpg', 'png', 'jpeg']: names.append(name) image_paths.append(os.path.join(args.img_paths, name)) images = [cv2.imread(path, cv2.IMREAD_COLOR) for path in image_paths] path = './result' isExists = os.path.exists(path) if not isExists: os.makedirs(path) for idx in range(len(images)): im = images[idx] det_out = detector.Predict(im, shrink=0.7) classifier.Predict(det_out) img = VisualizeResult(im, det_out) cv2.imwrite(os.path.join(path, names[idx] + '.result.jpg'), img) def predict_video(args, im_shape=(1920, 1080), use_camera=False): if args.use_camera: capture = cv2.VideoCapture(0) else: capture = cv2.VideoCapture(args.video_path) detector = FaceDetector(model_dir=args.models_dir + '/pyramidbox_lite/', mean=[104.0, 177.0, 123.0], scale=[0.007843, 0.007843, 0.007843], use_gpu=args.use_gpu, threshold=0.7) classifier = MaskClassifier(model_dir=args.models_dir + '/mask_detector/', mean=[0.5, 0.5, 0.5], scale=[1.0, 1.0, 1.0], use_gpu=args.use_gpu) path = './result' isExists = os.path.exists(path) if not isExists: os.makedirs(path) fps = 30 width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') writer = cv2.VideoWriter(os.path.join(path, 'result.mp4'), fourcc, fps, (width, height)) import time start_time = time.time() index = 0 while (1): ret, frame = capture.read() if not ret: break print('detect frame:%d' % (index)) index += 1 det_out = detector.Predict(frame, shrink=0.5) classifier.Predict(det_out) end_pre = time.time() im = VisualizeResult(frame, det_out) writer.write(im) if args.open_imshow: cv2.imshow('Mask Detection', im) if cv2.waitKey(1) & 0xFF == ord('q'): break end_time = time.time() print("Average prediction time per frame:", (end_time - start_time) / index) writer.release() if __name__ == "__main__": args = parse_args() print(args.models_dir) if args.img_paths != '': predict_images(args) elif args.video_path != '' or args.use_camera: predict_video(args)