/* * Copyright (c) 2006-2022, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-03-04 stevetong459 first version * 2022-07-15 Aligagago add apm32F4 serie MCU support * 2022-12-26 luobeihai add apm32F0 serie MCU support */ #include "drv_spi.h" //#define DRV_DEBUG #define LOG_TAG "drv.spi" #include "drv_log.h" #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) static struct apm32_spi_config spi_config[] = { #ifdef BSP_USING_SPI1 {SPI1, "spi1"}, #endif #ifdef BSP_USING_SPI2 {SPI2, "spi2"}, #endif #ifdef BSP_USING_SPI3 {SPI3, "spi3"}, #endif }; static struct apm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0}; /** * Attach the spi device to SPI bus, this function must be used after initialization. */ rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_T *cs_gpiox, uint16_t cs_gpio_pin) { RT_ASSERT(bus_name != RT_NULL); RT_ASSERT(device_name != RT_NULL); rt_err_t result; struct rt_spi_device *spi_device; struct apm32_spi_cs *cs_pin; GPIO_Config_T GPIO_InitStructure; /* initialize the cs pin && select the slave */ #if defined(SOC_SERIES_APM32F0) GPIO_ConfigStructInit(&GPIO_InitStructure); GPIO_InitStructure.pin = cs_gpio_pin; GPIO_InitStructure.speed = GPIO_SPEED_50MHz; GPIO_InitStructure.mode = GPIO_MODE_OUT; GPIO_InitStructure.outtype = GPIO_OUT_TYPE_PP; GPIO_InitStructure.pupd = GPIO_PUPD_NO; GPIO_Config(cs_gpiox, &GPIO_InitStructure); GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, Bit_SET); #elif defined(SOC_SERIES_APM32F1) GPIO_ConfigStructInit(&GPIO_InitStructure); GPIO_InitStructure.pin = cs_gpio_pin; GPIO_InitStructure.mode = GPIO_MODE_OUT_PP; GPIO_InitStructure.speed = GPIO_SPEED_50MHz; GPIO_Config(cs_gpiox, &GPIO_InitStructure); GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, BIT_SET); #elif defined(SOC_SERIES_APM32F4) GPIO_ConfigStructInit(&GPIO_InitStructure); GPIO_InitStructure.pin = cs_gpio_pin; GPIO_InitStructure.speed = GPIO_SPEED_100MHz; GPIO_InitStructure.mode = GPIO_MODE_OUT; GPIO_InitStructure.otype = GPIO_OTYPE_PP; GPIO_InitStructure.pupd = GPIO_PUPD_NOPULL; GPIO_Config(cs_gpiox, &GPIO_InitStructure); GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, BIT_SET); #endif /* attach the device to spi bus */ spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device)); RT_ASSERT(spi_device != RT_NULL); cs_pin = (struct apm32_spi_cs *)rt_malloc(sizeof(struct apm32_spi_cs)); RT_ASSERT(cs_pin != RT_NULL); cs_pin->GPIOx = cs_gpiox; cs_pin->GPIO_Pin = cs_gpio_pin; result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin); if (result != RT_EOK) { LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result); } RT_ASSERT(result == RT_EOK); LOG_D("%s attach to %s done", device_name, bus_name); return result; } static rt_err_t apm32_spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg) { RT_ASSERT(device != RT_NULL); RT_ASSERT(cfg != RT_NULL); SPI_Config_T hw_spi_config; struct rt_spi_bus * apm32_spi_bus = (struct rt_spi_bus *)device->bus; struct apm32_spi *spi_device = (struct apm32_spi *)apm32_spi_bus->parent.user_data; SPI_T *spi = spi_device->config->spi_x; uint32_t hw_spi_apb_clock; #if (DBG_LVL == DBG_LOG) uint32_t hw_spi_sys_clock = RCM_ReadSYSCLKFreq(); #endif /* apm32 spi gpio init and enable clock */ extern void apm32_msp_spi_init(void *Instance); apm32_msp_spi_init(spi); /* apm32 spi init */ hw_spi_config.mode = (cfg->mode & RT_SPI_SLAVE) ? SPI_MODE_SLAVE : SPI_MODE_MASTER; hw_spi_config.direction = (cfg->mode & RT_SPI_3WIRE) ? SPI_DIRECTION_1LINE_RX : SPI_DIRECTION_2LINES_FULLDUPLEX; hw_spi_config.phase = (cfg->mode & RT_SPI_CPHA) ? SPI_CLKPHA_2EDGE : SPI_CLKPHA_1EDGE; hw_spi_config.polarity = (cfg->mode & RT_SPI_CPOL) ? SPI_CLKPOL_HIGH : SPI_CLKPOL_LOW; #if defined(SOC_SERIES_APM32F0) hw_spi_config.slaveSelect = (cfg->mode & RT_SPI_NO_CS) ? SPI_SSC_DISABLE : SPI_SSC_ENABLE; hw_spi_config.firstBit = (cfg->mode & RT_SPI_MSB) ? SPI_FIRST_BIT_MSB : SPI_FIRST_BIT_LSB; #else hw_spi_config.nss = (cfg->mode & RT_SPI_NO_CS) ? SPI_NSS_HARD : SPI_NSS_SOFT; hw_spi_config.firstBit = (cfg->mode & RT_SPI_MSB) ? SPI_FIRSTBIT_MSB : SPI_FIRSTBIT_LSB; #endif if (cfg->data_width == 8) { hw_spi_config.length = SPI_DATA_LENGTH_8B; } else if (cfg->data_width == 16) { hw_spi_config.length = SPI_DATA_LENGTH_16B; } else { return -RT_EIO; } #if defined(SOC_SERIES_APM32F0) hw_spi_apb_clock = RCM_ReadPCLKFreq(); #else if (spi == SPI1) { RCM_ReadPCLKFreq(NULL, &hw_spi_apb_clock); } else { RCM_ReadPCLKFreq(&hw_spi_apb_clock, NULL); } #endif if (cfg->max_hz >= hw_spi_apb_clock / 2) { hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_2; } else if (cfg->max_hz >= hw_spi_apb_clock / 4) { hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_4; } else if (cfg->max_hz >= hw_spi_apb_clock / 8) { hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_8; } else if (cfg->max_hz >= hw_spi_apb_clock / 16) { hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_16; } else if (cfg->max_hz >= hw_spi_apb_clock / 32) { hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_32; } else if (cfg->max_hz >= hw_spi_apb_clock / 64) { hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_64; } else if (cfg->max_hz >= hw_spi_apb_clock / 128) { hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_128; } else { /* min prescaler 256 */ hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_256; } LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d", hw_spi_sys_clock, hw_spi_apb_clock, cfg->max_hz, hw_spi_config.baudrateDiv); #if defined(SOC_SERIES_APM32F0) SPI_DisableCRC(spi); SPI_EnableSSoutput(spi); SPI_ConfigFIFOThreshold(spi, SPI_RXFIFO_QUARTER); #endif SPI_Config(spi, &hw_spi_config); SPI_Enable(spi); return RT_EOK; } static rt_uint32_t apm32_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message) { RT_ASSERT(device != NULL); RT_ASSERT(message != NULL); struct rt_spi_configuration *config = &device->config; struct apm32_spi_cs *cs = device->parent.user_data; struct rt_spi_bus * apm32_spi_bus = (struct rt_spi_bus *)device->bus; struct apm32_spi *spi_device = (struct apm32_spi *)apm32_spi_bus->parent.user_data; SPI_T *spi = spi_device->config->spi_x; /* take CS */ if (message->cs_take) { #if defined(SOC_SERIES_APM32F0) GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, (GPIO_BSRET_T)RESET); #else GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, RESET); #endif LOG_D("spi take cs\n"); } if (config->data_width <= 8) { const rt_uint8_t *send_ptr = message->send_buf; rt_uint8_t *recv_ptr = message->recv_buf; rt_uint32_t size = message->length; LOG_D("spi poll transfer start: %d\n", size); while (size--) { rt_uint8_t data = 0xFF; if (send_ptr != RT_NULL) { data = *send_ptr++; } #if defined(SOC_SERIES_APM32F0) /* Wait until the transmit buffer is empty */ while (SPI_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET); SPI_TxData8(spi, data); /* Wait until a data is received */ while (SPI_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET); data = SPI_RxData8(spi); #else /* Wait until the transmit buffer is empty */ while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET); SPI_I2S_TxData(spi, data); /* Wait until a data is received */ while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET); data = SPI_I2S_RxData(spi); #endif if (recv_ptr != RT_NULL) { *recv_ptr++ = data; } } LOG_D("spi poll transfer finsh\n"); } else if (config->data_width <= 16) { const rt_uint16_t *send_ptr = message->send_buf; rt_uint16_t *recv_ptr = message->recv_buf; rt_uint32_t size = message->length; while (size--) { rt_uint16_t data = 0xFF; if (send_ptr != RT_NULL) { data = *send_ptr++; } #if defined(SOC_SERIES_APM32F0) /* Wait until the transmit buffer is empty */ while (SPI_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET); SPI_I2S_TxData16(spi, data); /* Wait until a data is received */ while (SPI_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET); data = SPI_I2S_RxData16(spi); #else /* Wait until the transmit buffer is empty */ while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET); /* Send the byte */ SPI_I2S_TxData(spi, data); /* Wait until a data is received */ while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET); /* Get the received data */ data = SPI_I2S_RxData(spi); #endif if (recv_ptr != RT_NULL) { *recv_ptr++ = data; } } } /* release CS */ if (message->cs_release) { #if defined(SOC_SERIES_APM32F0) GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, (GPIO_BSRET_T)SET); #else GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, SET); #endif LOG_D("spi release cs\n"); } return message->length; }; static const struct rt_spi_ops apm32_spi_ops = { apm32_spi_configure, apm32_spi_xfer }; static int rt_hw_spi_init(void) { rt_err_t result; for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++) { spi_bus_obj[i].config = &spi_config[i]; spi_bus_obj[i].spi_bus.parent.user_data = (void *)&spi_bus_obj[i]; result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].spi_bus_name, &apm32_spi_ops); RT_ASSERT(result == RT_EOK); LOG_D("%s bus init done", spi_config[i].spi_bus_name); } return result; } INIT_BOARD_EXPORT(rt_hw_spi_init); #endif /* RT_USING_SPI */